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Giovanni Marini a,b,*, Mattia Manica a,b,c, Luca Delucchi a, Andrea Pugliese d, Roberto Rosà a,e 
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A B S T R A C T   

West Nile Virus (WNV) is now endemic in many European countries, causing hundreds of human cases every 
year, with a high spatial and temporal heterogeneity. Previous studies have suggested that spring temperature 
might play a key role at shaping WNV transmission. Specifically, warmer temperatures in April-May might 
amplify WNV circulation, thus increasing the risk for human transmission later in the year. To test this hy-
pothesis, we collated publicly available data on the number of human infections recorded in Europe between 
2011 and 2019. We then applied generalized linear models to quantify the relationship between human cases and 
spring temperature, considering both average conditions (over years 2003-2010) and deviations from the 
average for subsequent years (2011-2019). We found a significant positive association both spatial (average 
conditions) and temporal (deviations). The former indicates that WNV circulation is higher in usually warmer 
regions while the latter implies a predictive value of spring conditions over the coming season. We also found a 
positive association with WNV detection during the previous year, which can be interpreted as an indication of 
the reliability of the surveillance system but also of WNV overwintering capacity. Weather anomalies at the 
beginning of the mosquito breeding season might act as an early warning signal for public health authorities, 
enabling them to strengthen in advance ongoing surveillance and prevention strategies.   

1. Introduction 

West Nile Virus (WNV), a flavivirus that was first isolated in Uganda 
in 1937 (Smithburn et al., 1940), is one of the most recent emerging 
mosquito-borne pathogens in Europe. It is maintained in a 
bird-mosquito transmission cycle primarily involving Culex species 
mosquitoes of which the Cx. pipiens complex is thought to be the most 
important in Europe (Zeller and Schuffenecker, 2004). Mosquitoes ac-
quire infection after biting an infectious bird and, after an incubation 
period, they become infectious and thus can transmit the virus through 
subsequent blood meals. Only lineage 1 and 2 of WNV have been asso-
ciated with significant outbreaks in humans, which act as incidental 
hosts in the natural transmission cycle (Petersen et al., 2013). While 
most human infections are asymptomatic, about 25% of the infections 
develop symptoms such as fever and headache and less than 1% more 
severe neurological diseases (Petersen et al., 2013). 

WNV (lineage 2) has most likely arrived in Europe first in Hungary 
thanks to migratory birds at the beginning of the century 

(Hernández-Triana et al., 2014; Veo et al., 2019; Zehender et al., 2017), 
and since then it has spread to many European countries causing hun-
dreds of human cases with a high heterogeneity in incidence both spatial 
(i.e. between and within different countries) and temporal (i.e. between 
different years) (European Centre for Disease Prevention and Control, 
2020). 

WNV transmission is largely affected by abiotic factors. First of all, 
mosquito population dynamics is strongly dependent on temperature 
(Chaves et al., 2011; Loetti et al., 2011; Ruybal et al., 2016). For 
instance, according to laboratory experiments, Cx. pipiens larvae take 
about three weeks to become adults at 15◦C and only 8 days at 30◦C 
(Loetti et al., 2011). Moreover, temperature is paramount at shaping 
viral circulation: warmer conditions increase mosquito biting rate 
(Ewing et al., 2016; Ruybal et al., 2016) and decrease the extrinsic in-
cubation period (EIP) (Reisen et al., 2006), thus accelerating WNV 
transmission. For instance, EIP was estimated to decrease from about 20 
days at 20◦C to about 10 days at 25◦C (Reisen et al., 2006). Also 
bird-mosquito transmission probability is temperature dependent and it 
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was found that an increase of two degrees (from 15.5◦C to 17.5◦C) might 
even double it (from 0.005 to 0.01) (Vogels et al., 2016; Marini et al., 
2020). 

Several studies conducted in Europe, e.g. (Cotar et al., 2016; Ewing 
et al., 2016; Marcantonio et al., 2015; Marini et al., 2020; Paz et al., 
2013; Rosà et al., 2014) and North America, e.g. (Chuang et al., 2011b; 
Chuang and Wimberly, 2012; Poh et al., 2019; Ruiz et al., 2010; Shand 
et al., 2016) highlighted the importance of temperature conditions both 
for Culex mosquito dynamics and WNV circulation. Recently, by cali-
brating an epidemiological model using detailed entomological data 
(mosquito abundance and WNV prevalence) gathered over several years 
in northern Italy, we found a strong positive association between 
average spring (April-May) temperature and WNV estimated prevalence 
both in mosquito and avian hosts during summer (Marini et al., 2020). 
We argued that such warm conditions at the beginning of the season 
might amplify earlier WNV transmission, resulting in a higher circula-
tion during the following months. Here we investigate whether such 
relationship holds at a broader spatial and temporal scale. To this aim, 
we collated WNV epidemiological data publicly available from the ECDC 
database (now available in tabular format in the online public re-
pository) and analyzed the relationship between spring temperature and 
WNV human infection at European level using regression analysis. 

2. Materials and Methods 

2.1. WNV cases 

We collated all publicly available data on laboratory confirmed WNV 
human cases from the ECDC website (www.ecdc.europa.eu, accessed on 
February 18, 2020), aggregated by year and administrative unit at the 
NUTS (Nomenclature of territorial units for statistics) 3 level (Eurostat, 
2020). Data are available from 2011 to 2019 for a total of 186 NUTS3 
areas in 15 EU Member States and neighboring countries. Cases are re-
ported according to the European Commission Decision of 28/IV/2008, 
which provides that cases are confirmed through laboratory test (e.g. 
virus isolation in blood and/or WNV antibody detection). 

We denote the number of human cases for area i and year y with Hy,i. 
Administrative units appear for the first time in the database at different 
years (when for the first time at least one human infection is recorded) 
and only if there are cases. Therefore, as only strictly positive numbers 
are presented, we introduced zeros in the following way: if a given 
NUTS3 area i appears in the database for the first time in year ŷ, then for 
every year y > ŷ with no reported cases (i.e. area i does not appear in the 
ECDC dataset) we assumed Hy,i=0. 

2.2. Temperature data 

For each NUTS3 region and year between 2003 and 2019, daily 
average temperature data were obtained from the gap-free Moderate 
Resolution Imaging Spectroradiometer (MODIS) Land Surface Temper-
ature (LST) maps (Metz et al., 2014). The MODIS data are downloaded 
automatically from NASA’s Land Processes Distributed Active Archive 
Center (LP DAAC) located at the USGS Earth Resources Observation and 
Science (EROS) Center using pyModis software and processed using 
GDAL and GRASS GIS software. The daily tiles at 1000 m resolution for 
entire Europe are mosaicked and masked using the quality layer 

provided by MODIS products. Subsequently, working at spatial resolu-
tion of 250 m, a temporal weighted gap filling was applied and even-
tually last empty pixels were reconstructed with a spatial bspline 
interpolation. Finally, daily temperature values for each region were 
computed as average of the daily tiles covering the area of interest. 

2.3. Statistical models 

The relationship between temperature and the number of human 
infections was investigated in a regression modelling framework 
applying a zero-inflated model. Specifically, we developed a mixture 
model including two generalized linear models (GLMs), one assuming a 
Bernoulli distribution with logit link and one assuming a Negative 
Binomial (NB) distribution with log link. Therefore, the model assumes a 
zero-inflated negative binomial (ZINB) distribution for the response 
variable Hy,i, which provides a convenient interpretation of the zeros 
observed in the dataset. Specifically, the zeros are modelled as coming 
from two different processes: the “true” zeros modelled by the count 
process (NB GLM), and the “false” zeros modelled by the binary process 
(Bernoulli GLM) which are zeros that cannot be explained by the count 
process and may be due to under reporting or lack of detection (Zuur 
et al., 2009). We considered three possible explanatory variables both 
for the count and the binomial part: 

1 T̂: the average, over years 2003-2010, of the mean April-May tem-
perature, the same temporal window highlighted in (Marini et al., 
2020). In that study, the average host and mosquito prevalence 
estimated by a temperature-dependent epidemiological model in 
June was found to be significantly associated with the average 
temperature of the two previous (April and May) months. Be ωy,i the 
average April-May temperature for area i and year y, then T̂ i =
∑2010

y=2003ωy,i/8. Such variable can thus be interpreted as an indication 
of the average conditions of a given region and a proxy for its cli-
matic suitability for viral circulation. 

2 STD_ANOMALY: spring temperature anomaly, given as the differ-
ence of the average April-May temperature of a given year with the 
2003-2010 average divided by the standard deviation. So 
STD ANOMALYy,i = (ωy,i − T̂ i)/sd2003− 2010(ωi) for y ≥ 2011. This 
variable can be interpreted as an indication of how warmer or colder 
spring is during year y, in a region, with respect to its average 
condition.  

3 WNV_BEFORE: a variable set to “NR” (Not Recorded) for each year 
that is the first one in which the administrative unit appears in the 
database, set to 0 for each year when in the previous year no WNV 
cases were reported within the administrative unit (but the current 
year is not the first one in which the administrative unit appears in 
the database), set to 1 otherwise (there were WNV cases during the 
previous year). 

The full model can thus be represented by the following equations: 

Hy,i ∼ ZINB
(
μy,i, k, πy,i

)

Count model : logμy,i = β0 + β1⋅T̂ i + β2⋅STD ANOMALYy,i + β3⋅WNV BEFORE 1y,i + β4⋅WNV BEFORE NRy,i  

Binomial model : logit
(
πy,i

)
= α0 + α1⋅T̂ i + α2⋅STD ANOMALYy,i + α3⋅WNV BEFORE 1y,i + α4⋅WNV BEFORE NRy,i   
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Where πy,i represents the probability of getting zero in the binomial 
model while μy,i (mean) and k (dispersion parameter) characterize the 
NB distribution in the count model. Note that with this formulation we 
are defining 0 as reference level for WNV_BEFORE. 

We computed all models with every possible combination of the 
covariates in the binomial and the count parts. We ranked them by the 
Akaike Information Criterion (AIC) and then selected as best model the 
most parsimonious one, i.e. the one with lowest AIC and all significant 
coefficients. All analysis, including plots creation, was carried out using 
R v3.6.0 (R Core Team, 2020). The dataset and the R code to reproduce 
the analysis are available at https://github.com/giomarini/WNV_sprin 
g_Europe. 

3. Results 

The distribution of Hy,i is presented in Figure 1, also aggregated by 
administrative area and year. We gathered a total of 977 observations, of 

which 437 are introduced zeros (44%), with an average of 3.1 (5.7 
excluding the zeros), a median of 1 (2 excluding the zeros) and a 
maximum value of 197 cases. During 2018 large WNV outbreaks 
occurred in several areas, resulting in 1567 confirmed cases all over 
Europe, about the same as the total number of infections recorded 
during all other years (1502, see Figure 1b). 

After ranking all computed models according to their AIC score, we 
selected as best model the second one as T̂ is not significant in the 
binomial part of the full model (see Appendix A). The coefficients of the 
selected best model are presented in Table 1. In the count model, both 
temperature covariates have a positive significant coefficient. So out-
breaks are likely to be larger in warm regions; moreover warmer than 
usual springs are associated with a higher number of recorded cases (see 
Figure 2a, b). There are substantially fewer expected cases if WNV was 
not detected in the previous year. 

Conversely, WNV detection during the previous year and anoma-
lously warmer spring decrease the probability of a zero of the binomial 
model. This latter negative relationship taken together with the results 
from the count model suggests that with warmer spring conditions the 
probability of recording no cases substantially decreases (see Figure 2c, 
d). 

4. Discussion 

By analyzing WNV cases recorded in Europe during last decade, we 
found that warmer springs result in a likely higher risk for human 
spillover. Several studies (e.g. (Chuang and Wimberly, 2012; Cotar et al., 
2016; Ewing et al., 2016; Marcantonio et al., 2015; Marini et al., 2020; 
Paz et al., 2013; Rosà et al., 2014)) suggest that early spring temperature 
conditions may be particularly important for activating the mosquito 
breeding season, reducing the extrinsic incubation period and thus 
accelerating virus amplification in the avian and mosquito populations. 
Nonetheless, such studies might be temporally or spatially limited. For 
instance, (Cotar et al., 2016; Marini et al., 2020; Rosà et al., 2014) use 
data gathered in a relatively small area (a single region of one country), 
while (Marcantonio et al., 2015; Paz et al., 2013) rely on data recorded 
over relatively few years (no more than three). Instead, we built our 
dataset using all data available so far at ECDC, namely 9 years of data 
gathered over 15 European countries, and our statistical analysis cor-
roborates such previous suggestions. Note that the results are similar 
when analyzing the original ECDC dataset (see Appendix A) through a 
linear model with log-transformed data, without introducing the zeros 
using the procedure explained in section 2.1. 

Warmer springs might help amplifying virus transmission through 
different mechanisms: by increasing the biting rate (Ewing et al., 2016; 
Ruybal et al., 2016), the host-to-vector transmission probability 
(Holicki et al., 2020; Vogels et al., 2016) and by accelerating the mos-
quito viral incubation period (Reisen et al., 2006). Moreover, favorable 

Fig. 1. WNV cases recorded in Europe between 2011 and 2019. a) Distribution 
of Hy,i, the number of recorded confirmed WNV human cases in area i during 
year y; b) total number of cases by year; c) total number of cases by adminis-
trative area (NUTS3 level). 

Table 1 
Estimates, standard errors and p-values of the parameters of the selected best 
model. Reference level for WNV_BEFORE is 0 (no cases in the previous year).  

Count model 

Parameters Estimate Standard Error p-value 

T̂  0.42 0.04 <0.001 

STD_ANOMALY 0.35 0.04 <0.001 
WNV_BEFORE: 1 0.4 0.15 0.009 
WNV_BEFORE: NR 0.08 0.17 0.64 
Log(k) -0.3 0.09 <0.001 

Binomial model 

Parameters Estimate Standard Error p-value 

STD_ANOMALY -0.52 0.12 <0.001 
WNV_BEFORE: 1 -1.99 0.31 <0.001 
WNV_BEFORE: NR -19.7 976.16 0.98  
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conditions might increase mosquito population size during the season 
(Marini et al., 2016), possibly also by enhancing oviposition activity 
(Hayes and Hsi, 1975; Nguyen et al., 2012), thus resulting in a higher 
vector-to-host ratio and ultimately in a larger probability of enzootic 
transmission. The relevance of WNV as a public health threat at Euro-
pean level has peaked during the 2018 season when 15 countries re-
ported cases and an unfortunate high number (180) of deaths (European 
Centre for Disease Prevention and Control, 2018,). Therefore, it is 
essential to study the ecological mechanism that may signal an increased 
WNV risk of both spread to other countries and local transmission. Our 
results suggest that an increase in spring temperature is positively 
associated with an increase of WNV transmission and could be consid-
ered as an early warning to enhance surveillance and vector control. At 
present, the One Health approach to WNV surveillance, a system tar-
geting humans, wild birds, horses, and mosquitoes, has been successful 
in mitigating the cost associated with WNV transmission (e.g. blood 
transfusion disruption and blood donor screenings) (Paternoster et al., 
2017). Integrating also eco-climatic information collected before the 
start of the potential transmission season could further guide the disease 
mitigation policy by better tailoring the monitoring efforts. 

The negative coefficients in the binomial model decrease the prob-
ability that WNV cases are not reported due to shortcomings in the 
detection (“false” zeros). The negative coefficient estimated for STD_A-
NOMALY in the binomial model taken together with the results from the 
count model suggests that with warmer spring conditions the probability 
of recording no cases, possibly due to imperfect surveillance (binomial 
part), substantially decreases; yet when a zero is recorded under such 
conditions the model suggests that it is more likely due to absence of 
symptomatic human cases (so indeed a “true” zero) rather than under- 
detection or lack of reporting. In fact, the model seems to suggest that 
there is an unexpected excessive absence of symptomatic cases when 

conditions for WNV circulation (at least the ones included in the models) 
are not optimal. This may be due to sporadic circulation that fails to be 
detected. On the other hand, when conditions are optimal, either there is 
a substantial number of cases or, for yet unexplained reasons (e.g. local 
extinction or local bird immunity) WNV circulation is limited or absent. 

We also found a positive association with previous WNV detection. 
This may be due to several factors: once WNV is introduced in a new 
area, it will likely overwinter and reactivate every year, as already 
suggested by phylogenetical analyses (Veo et al., 2019; Ziegler et al., 
2020); furthermore, a first detection of a WNV case in an area will in-
crease the physicians’ awareness of the disease, thus improving the 
detection capacity of the surveillance system. These findings seem to 
indicate that once present WNV is there to stay, therefore urging public 
health authorities of neighboring WNV-positive areas to increase sur-
veillance and vector control efforts. This task is however challenged by a 
lack of precise knowledge of the underlying mechanisms that drive WNV 
spread and re-emergence between countries and years. 

Certainly, as already hinted above, many other abiotic factors could 
influence the occurrence of large WNV outbreaks in a given area. For 
instance, other climatic variables not explicitly considered in our anal-
ysis, such as precipitation or humidity, influence WNV transmission as 
well (Cotar et al., 2016; Kioutsioukis and Stilianakis, 2019; Paz et al., 
2013). Also, human activities can influence mosquito dynamics and 
pathogen circulation (Chaves et al., 2011; Chuang et al., 2012, 2011a). 
Moreover, yearly variations in WNV incidence may be due to the 
intrinsic dynamics of the epidemics; for instance, it is plausible that after 
a year with high incidence, both adult birds and humans will be immune 
to WNV, thus decreasing the incidence in the following year, indepen-
dently of abiotic factors (Kwan et al., 2012; Paull et al., 2017; Ribeiro 
et al., 2020). Certainly model predictions could greatly benefit from 
including all these kinds of data, if available. 

Fig. 2. Model predictions conditional to the temperature covariates and WNV_BEFORE. Expected values ((1 − πy,i)⋅μy,i, panels a and b) and probability of recording 
zero cases (πy,i + (1 − πy,i)⋅PNB(Hy,i = 0), panels c and d) as functions of T̂ (◦C) (panels a and c) and STD_ANOMALY (panels b and d) according to the three possible 
values of WNV_BEFORE (0: green, 1: red, NR: blue). 
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Nonetheless, temperature seems to be one of the most crucial factors 
at shaping both mosquito dynamics and viral circulation (Paz, 2015). 
During the cold season, temperature might critically affect survival of 
overwintering mosquitoes (Poh et al., 2019; Reisen et al., 2010), while 
during summer it can strongly influence mosquito abundance and dy-
namics (Chuang et al., 2011a; Marini et al., 2016; Rosà et al., 2014). 
Using a similar approach, we performed some additional statistical an-
alyses to investigate whether summer average conditions and deviations 
significantly affect WNV transmission and found that, although unsur-
prisingly warm summers are associated with larger outbreaks, spring 
predictors better explain the observed European dynamics (see Appen-
dix A). Such results thus confirm the importance of weather conditions 
during the beginning of the mosquito breeding season. In our study we 
used LST data, as previously done in several studies (Bisanzio et al., 
2011; Candeloro et al., 2020; Chuang and Wimberly, 2012; Conte et al., 
2015; Marcantonio et al., 2015; Rosà et al., 2014), although air tem-
perature, as usually collected through ground stations above 2m from 
the ground, might represent a better predictor from a biological 
perspective. However, it seems reasonable to assume that such tem-
perature is correlated with LST, so the latter might be a proxy for the 
former. 

Conclusions 

Despite its limitations, our study highlights that weather anomalies 
at the beginning of the mosquito breeding season might be considered as 
an early warning signal for public health authorities, in particular those 
already implementing surveillance programs. In fact, spring anomalies 
might prompt a strengthening of such ongoing surveillance efforts or an 
earlier application of control treatments. 
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