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ABSTRACT

Nowadays, training end-to-end neural models for spoken
language translation (SLT) still has to confront with extreme
data scarcity conditions. The existing SLT parallel corpora
are indeed orders of magnitude smaller than those available
for the closely related tasks of automatic speech recognition
(ASR) and machine translation (MT), which usually comprise
tens of millions of instances. To cope with data paucity, in
this paper we explore the effectiveness of transfer learning in
end-to-end SLT by presenting a multilingual approach to the
task. Multilingual solutions are widely studied in MT and
usually rely on “target forcing”, in which multilingual paral-
lel data are combined to train a single model by prepending
to the input sequences a language token that specifies the tar-
get language. However, when tested in speech translation,
our experiments show that MT-like target forcing, used as is,
is not effective in discriminating among the target languages.
Thus, we propose a variant that uses target-language embed-
dings to shift the input representations in different portions
of the space according to the language, so to better support
the production of output in the desired target language. Our
experiments on end-to-end SLT from English into six lan-
guages show important improvements when translating into
similar languages, especially when these are supported by
scarce data. Further improvements are obtained when us-
ing English ASR data as an additional language (up to +2.5
BLEU points).

Index Terms— deep learning, speech translation, multi-
linguality, direct speech-to-text translation.

1. INTRODUCTION

The state-of-the art results obtained by encoder-decoder mod-
els [1] with sequence-to-sequence learning in fields like ASR
[2, 3, 4, 5] and, most importantly, machine translation [6, 7],
have led to the recent proposal of sequence-to-sequence learn-
ing for direct speech-to-text translation [8, 9], that is translat-
ing from audio without an intermediate output representation.
Unfortunately, end-to-end models require large amounts of
parallel training data [10] that are not yet available for the SLT
task. Indeed, while state-of-the-art sequence-to-sequence sys-
tems for ASR and MT are respectively trained on thousands

of hours of transcribed speech [11] and tens of millions of par-
allel sentences [12], the largest publicly available SLT corpus
comprises about 500 hours of translated speech and few oth-
ers amount to less than 300 hours each [13].

To overcome this limitation, several works have proposed
approaches that exploit in different ways the wealth of ASR or
MT data available (respectively, the audio-trascription and the
parallel text corpora used to train the two types of systems).
Multitask learning or transfer learning are generally used to
exploit ASR data [14, 15, 16, 17] with positive results, and
the improvements are more evident when less training data
for SLT are available. In [18], the authors report good re-
sults on a small dataset by an approach that combines transfer
learning from both ASR and MT using task-based curricu-
lum learning. Other approaches to overcome the low-resource
condition are data augmentation [19] and knowledge distilla-
tion [20]. However, [21] showed that current direct models
are not data-efficient in leveraging non-SLT data, and that the
classic “cascade” approach (i.e. a pipelined architecture inte-
grating ASR and MT1) still performs better.

In this paper, we take advantage of the recent release of
MuST-C [13], which provides parallel SLT data for eight
languages, in order to study whether multilingual data can
be used to train systems with better translation quality than
unidirectional (i.e. one-to-one) systems. Multilinguality has
been widely explored in neural MT [22, 23, 24, 25, 26, 27],
where it is now commonly performed using the target forc-
ing mechanism [28, 29], which enables translation to many
languages ({one,many}-to-many) without changing the un-
derlying NMT architecture. The idea is to prepend the source
sentence with a token representing the target language, and all
the sentences are processed using the same shared encoder-
decoder architecture. Although this approach has been pro-
posed for RNN-based NMT, it works even better [30] when
using the Transformer [6] architecture. Target forcing has
also been applied to multilingual speech recognition [31, 32]
showing to improve the transcription quality, although multi-
lingual ASR shows to be better than its monolingual counter-
parts even when the language token is not provided.

1Though effective, cascade SLT solutions have some drawbacks that end-
to-end SLT aims to overcome in the long run. Besides the higher architectural
complexity, these include: error propagation (ASR errors are hard to recover
by the MT component), and larger inference latency.



A single model with shared parameters is particularly ap-
pealing in low-resource scenarios [33, 29] as it performs a sort
of transfer learning across languages. However, compared to
one-to-one models, the results of a multilingual model usually
degrade in the language directions supported by more training
data. Taking advantage of the MuST-C corpus, in this study
we focus on the one-to-many scenario and investigate what
groups of target languages favor transfer learning in SLT. To
the best of our knowledge, this represents the first study on
the effectiveness of the multilingual approach to SLT.

Along this direction, we proceed incrementally by first
showing the limitations of MT-like target forcing and then
by proposing and evaluating our SLT-oriented enhancements.
First, our initial experiments show that the target forcing ap-
proach as proposed in [29] compares poorly with the unidi-
rectional baselines. By looking at the output, we observe that
the system produces sentences whose words are coherently
in one language, but in many cases the chosen language is
wrong. As the system is not able to learn the co-occurrence
between the embedding of the language token and the words
in the target language, we then propose to give a stronger
learning signal by modifying the input content using the lan-
guage embedding. This, in practice, is repeated along the time
dimension so to be propagated through the whole input se-
quence (rather than being one single vector among thousands
of others). Our experiments show that, by using this vari-
ant, translating into similar languages, i.e. Germanic (German
and Dutch) and western European Romance (French, Italian,
Spanish and Portuguese) leads to better average results than
those obtained by unidirectional systems. However, and to
our view unsurprisingly due to the difficulty to transfer knowl-
edge across distant languages, the same improvements are not
observed when merging more languages. Indeed, using the
six languages together as a target yields improvements only
for the lesser-resourced language direction, while combining
all the eight languages covered by MuST-C leads to perfor-
mance degradations in all the cases. In our final experiments,
we also added English to the target languages of all the mul-
tilingual systems, which are then trained for translation and
ASR. This provides a slight but consistent improvement to
all results. Overall, in all but the two target languages with
more training data, our best multilingual models outperform
one-to-one models of comparable size by at least 0.4 BLEU
points. In particular, on the least represented language di-
rection in MuST-C (i.e. English→Portuguese, for which the
corpus includes 385 hours of translated speech), the observed
performance improvement over the one-to-one competitor (up
to +2.5 BLEU points) indicates the feasibility of the proposed
approach to operate in low-resource conditions.

2. DIRECT SPEECH TRANSLATION

Direct speech translation is defined as the problem of gener-
ating a sequence Y representing a text in a target language,

given an input signal X representing a speech in the source
language. A model for this task can be trained by optimizing
the likelihood L = logP (Y|X; θ), where θ is the vector of
model’s parameters. The loss is usually computed in an au-
toregressive manner such as L =

∑T
t=0 logP (yt|y<t,X; θ).

Recent works on end-to-end SLT used deep learning recur-
rent models based on LSTMs [34] that differ mainly in the
number of LSTM layers and the use of convolution in the
encoder [14, 16, 19]. However, recurrent models are char-
acterized by slow training [35, 36] and they have been re-
placed in MT by Transformer [6]. In our experiments we
used Speech-Transformer [37], an adaptation of Transformer
to ASR, which in recent previous work has shown to perform
really well with little modification also on monolingual end-
to-end SLT [38].
Speech-Transformer adapts Transformer to work with audio
input provided as sequences of MEL filterbanks [39], which
are characterized by joint dependencies in the two dimen-
sions of time and frequency [40] and that are orders of mag-
nitude longer than the text representations handled by MT.
Because of those characteristics, the input is first processed
and reduced with 2 layers of strided 2D CNNs [41], each
followed by ReLU activation and batch normalization [42].
2D CNNs reduce the input dimension while capturing short-
range bidimensional dependencies. The output of the sec-
ond CNN layer is processed by two stacked 2D self-attention
layers [37], which are meant to model long-range bidimen-
sional dependencies, then it is reshaped and processed by a
feed-forward layer with ReLU activation. Then, the output
of ReLU is summed to position vectors obtained through a
trigonometric positional encoding [6] processed by a stack of
Transformer encoder layers (darker box on the left in Fig-
ure 1, which provides a simplified schema of the architec-
ture). Each layer consists of a multi-head attention network
for computing self attention of its input, followed by a 2-
layered feed-forward network. Each of the two sublayers is
followed by layer normalization [43] and residual connec-
tions [44]. The decoder consists of a stack of Transformer
layers, similar to the encoder layers, except for the presence
of an attention between encoder and decoder before the feed-
forward network. The decoder receives in input a sequence of
character embeddings summed with trigonometric positional
encoding (right-hand side of the figure). 2D Self-attention
(2DSAN) starts with three parallel 2D CNN layers that com-
pute three different representation of their input Q,K,V. At-
tention is computed as:

di = softmax(QiK
T
i /

√
dmodel) ·Vi (1)

with i = {1, . . . , c}, where c is the number of CNN filters,
and the attention is computed in parallel for each i. Equa-
tion 1 shows how attention along the time dimension is com-
puted, but the three tensors are also transposed to compute
attention along the frequency domain. All the attention out-
puts of the two parallel attention layers are then concatenated



Fig. 1. Proposed encoder-decoder architecture. The dashed
lines represent the points where target forcing can be applied.

and processed by a final 2D CNN layer. All convolutions are
followed by ReLU activation and batch normalization. This
mechanism is analogous to the multi-head attention, except
for the use of CNNs instead of affine transformations, and the
use of the additional attention along the frequency domain.
The authors of [37] mention the introduction of a distance
penalty mechanism in their encoder self-attention layers, but
they do not provide additional details. Building on the same
idea, we use a distance penalty that is subtracted to the input
of softmax in Equation 1. Let d = |i− j| be the distance be-
tween positions i and j, we then define a logarithmic penalty
[38] as follows:

πlog(d) =

{
0, if d = 0
loge(d), else

(2)

The use of logarithm is motivated by the fact that we
want to bias the self attention towards the local context of
each position, but we do not want to entirely prevent it from
capturing the influence of global context. In preliminary ex-
periments, we observed that using this logarithmic distance
penalty mechanism leads to better results than an unbiased
attention.

3. MULTILINGUAL TRANSLATION

In this section we first introduce the target forcing mechanism
used in multilingual NMT and propose two variants to apply
it to the SLT task. Then, we discuss two different but comple-
mentary ways to exploit ASR data in order to improve final
translation performance.

3.1. Target forcing

We perform one-to-many multilingual SLT with a single
model by using the target forcing mechanism [29], which
tags every source sentence with a language token indicating
the target language. In NMT, the language token is simply
prepended to the input text sequence, and used identically to

all the other tokens to retrieve an embedding that is jointly
learned with the rest of the network. However, this method
has to be adapted to a speech encoder that does not have an
embedding layer. Thus, we propose two different approaches,
namely: i) concat, which prepends a language embedding to
the input sequence, and ii) merge, which sums the embedding
to all the elements in the sequence. In both cases, the lan-
guage embeddings are learnable parameters of the network.
Concat. The first approach is a straightforward adaptation
of the target forcing mechanism [29] to speech translation.
Let X ∈ RT×F be a matrix containing a sequence of audio
feature vectors, where T is the number of time steps and F
is the number of features, and let l ∈ R1xF be a language
embedding of the same size F . Then, analogously to the text
input case, where the language token is prepended to the input
string, we produce the new target-language dependent repre-
sentation X′ ∈ R(T+1)×F by concatenating l to X . In this
case, only the language embedding is a learnable parameter,
while X is a fixed sequence of MEL filterbanks.
Merge. While the concat method modifies the input represen-
tation by concatenating an additional vector, the merge ap-
proach alters the content of the input representation. Given
the two tensors X and l as in the previous case, now we de-
fine X′ ∈ RTxF as the sum X′ = X + l where l is repeated
along the time dimension. Considering the length of the au-
dio input (recall that, differently from the textual representa-
tions handled by MT, the sequences of MEL filterbanks input
to SLT are orders of magnitude longer), the intuition is that
the concat approach can fail in propagating the language to-
ken towards the whole input sequence. In contrast, with the
merge approach the input tensor is translated (in a geomet-
ric sense) to different portions of the space for each different
language so to have representations that are clearly distinct
between one language and another starting by the input. In
this way, the same input sentence has clearly different repre-
sentations when it has to be translated to different languages,
and the learning task becomes easier.

3.2. ASR data

It is widely demonstrated in literature that exploiting ASR
data is useful for improving the performance of direct SLT
systems, with the main approaches being transfer learning
[16, 15] and multitask learning [14, 17]. Indeed, the ASR
task is easier than translation as it is monolingual and does
not involve reordering and, as such, it is used to obtain en-
coder representations that are better also for SLT. In our ex-
periments, we exploit ASR data in two ways. The first way
is transfer learning, and consists in training another Speech
Transformer for the ASR task, then using its encoder weights
to initialize the parameters of the SLT model (pre-training).
The second way is to use English ASR data as if it was an
additional language for the multilingual system (+ASR). This
approach is analogous to multi-task training but, unlike the



Tgt #Hours #Sent #Talk src w tgt w
De 408 234K 2,093 4.3M 4.0M
Es 504 270K 2,564 5.3M 5.1M
Fr 492 280K 2,510 5.2M 5.4M
It 465 258K 2,374 4.9M 4.6M
Nl 442 253K 2,267 4.7M 4.3M
Pt 385 211K 2,050 4.0M 3.8M
Ro 432 240K 2,216 4.6M 4.3M
Ru 489 270K 2,498 5.1M 4.3M

Table 1. Statistics for each section of MuST-C.

approach used in [14] of using two different decoders, we can
take advantage of the multilingual model and use ASR data to
train also the decoder [21]. Because of its documented effec-
tiveness, we use pre-training in all our experiments, while we
evaluate the effectiveness of the +ASR approach with ablation
experiments.

4. EXPERIMENTS

Dataset. We use the MuST-C corpus [13], which represents
the largest publicly available multilingual corpus (one-to-
many) for SLT. It covers eight language directions, from En-
glish to German, Spanish, French, Italian, Dutch, Portuguese,
Romanian and Russian. The corpus consists of audio, tran-
scriptions and translations of English TED talks, and it comes
with a predefined training, validation and test split. In terms
of hours of transcribed/translated speech (see Table 1 for
complete statistics), the size of the different sections of the
corpus ranges from 385 (Portuguese) to 504 hours (Spanish).
Model settings. The first two CNNs in the encoder have 16
output channels, 3 × 3 kernel and stride (2, 2). The CNNs
inside the 2D self-attention have 3×3 kernels, 4 output chan-
nels and stride 1. The output CNN of the 2D self-attention
has 16 output channels. The following feed-forward layer has
512 output features, which is the same size as the Transformer
layers. The hidden feed-forward layer size of Transformer is
1024. The decoder layers have also size 512 and hidden size
1024. Dropout is set to 0.1 in each layer. Each minibatch
includes up to 8 sentences for each language and we update
the gradient every 16 iterations. All the models are trained
with the Adam [45] optimizer with an initial learning rate of
0.0003, then 4000 warmup steps during which it increases
linearly up to a max value, and then decreases with the in-
verse square root of the number of steps [6]. As the batch size
depends on the number of languages, the maximum learning
rate is increased with this number. We searched the best learn-
ing rate testing on a held-out set, and we selected 0.01 for
the experiments with the Germanic and Romance languages,
and 0.02 for the experiments with 6 or all languages. Our
baselines are based on the same architecture and replicate the
results obtained in [38], which are reportedly stronger than
the ones in [13]. As additional stronger baselines, we also

De Nl Es Fr It Pt
Baseline 17.3 18.8 20.8 26.9 16.8 20.1
C-Pre 14.0 11.6 13.0 16.3 10.7 14.5
C-Post 12.0 13.8 12.3 18.0 9.3 14.6
C-Final 14.5 12.1 13.6 16.7 10.2 16.2
M-Pre 17.6 19.5 20.5 26.2 17.2 22.3
M-Post 17.1 19.2 20.5 26.2 17.4 22.3
M-Final 17.4 18.8 20.4 26.7 17.2 22.2
M-Dec. 17.3 19.1 20.6 26.2 17.2 22.0
M-Pre + ASR 17.7 20.0 20.9 26.5 18.0 22.6

Table 2. BLEU score results with concat (C-*) and merge
(M-*) target forcing on 6 languages. The baselines are one-
to-one systems. The other results are computed with one mul-
tilingual system for En→De,NL and one for En→Es,Fr,It,Pt.

train cascade models that concatenate an ASR and an MT sys-
tem, where the ASR consists of an attention model using the
same architecture of our direct SLT systems and the MT is a
Transformer Base architecture [6]. All the models are imple-
mented in Pytorch [46] with FBK-fairseq-ST2, derived from
the fairseq toolkit [35].
Experimental Settings. In our first experiments we train two
multilingual models, one for Germanic languages (German,
Dutch), and one for western European Romance languages
(Spanish, French, Italian, Portuguese). Although Romanian is
also a Romance language, we keep it out from this experiment
because its slavic influences make it quite different from the
other 4 languages. Romanian and Russian are finally used in
one last experiment.
Data preprocessing. From each audio segment we compute
the MEL filter-banks [39] with 40 filters, using overlapping
windows of 25 ms and step of 10 ms. The resulting spec-
trograms are normalized by subtracting the mean and divid-
ing by the standard deviation. All the texts are tokenized and
the punctuation is normalized. In our cascade models, ASR
systems are trained without punctuation in output and with
lowercased text split into characters, while MT systems re-
ceive lowercased English text without punctuation in input,
and produce text that preserves the casing and with punctu-
ation in the target language as output. Both source and tar-
get are split in subwords with BPE segmentation [47] using
32, 000 joint merge rules in MT. In the target side of the SLT
systems, texts are split into characters and punctuation is kept
in the target texts. We do not use BPE for SLT because in our
preliminary experiments it performed poorly.

5. RESULTS

Concat vs Merge. Our first experiment consists in comparing
the baselines with the multilingual models based on the tar-
get forcing mechanism. The results presented in Table 2 show
that concat target forcing (C-Pre) is much worse than the

2https://github.com/mattiadg/FBK-Fairseq-ST



baselines. However, note that our baselines are stronger than
the ones reported in [13]. By looking at the translations, we
found that the cause of the degradation is that many sentences
are acceptable translations, but in a wrong language. We first
hypothesize that the processing performed in the layer pre-
ceding the encoder self-attentional stack loses the language
information. Thus, we concatenate the language embedding
to the representations of the Post and Final positions (see Fig.
1), both after the 2DSANs. The new results, listed in Table 2,
show small and non consistent variations, and are still worse
than the baselines in all languages. Our second hypothesis
is that the networks are not able to learn the joint probabili-
ties of language embeddings and character sequences because
of a combination of factors: character-level translations (in-
stead of sub-words), very long source-side sequences and the
source sides in the corpus are highly overlapping between lan-
guages. Thus, we assume that our networks can learn to dis-
criminate better among target languages by giving a stronger
language signal. For this reason, we introduce the merge tar-
get forcing that forces the network to generate target-language
dependent encoder representations by translating them in dif-
ferent portions of the space according to the target language.
The results in Table 2 show that merge target forcing (M-*) is
definitely better than concat for all the target languages and
also obtains performance that is on par with, or better than, the
baselines. M-Pre is the system that shows high results more
consistently in all languages, and the largest improvement is
observed in En-Pt, with over 2.0 BLEU points of gain, fol-
lowed by +0.7 in En-Nl. The BLEU score slightly degrades
for Spanish by 0.2 ∼ 0.4, and for French by 0.2 ∼ 0.7. Be-
sides the three different language embedding positions in the
encoder, we also performed experiments by applying target
forcing on the decoder, but they show slightly worse perfor-
mance. Then, for the following experiments we will continue
only with the Pre position that results in the best average per-
formance on all the language directions.

When adding also ASR data to our training set (M-Pre
+ ASR) we observe small but consistent improvements in all
languages. In this case, there are improvements over the base-
lines larger than 1 BLEU point in 3 out of 6 target languages:
Dutch, Italian and Portuguese. Moreover, the system does
not degrade in En-Es, the direction with the largest dataset
available, and it is only 0.4 BLEU points below the baseline
in En-Fr. These last experiments show that the advantage of
training ASR data are visible even when the SLT models have
been pre-trained on the ASR task.
Number of languages. When training a system with all the 6
target languages (De, Nl, Es, Fr, It, Pt) together, in Table 3 we
observe results on par with the baseline for German and Ital-
ian, slightly worse results on Dutch and Spanish (respectively,
-0.4 and -0.8), a larger degradation for French (−1.5), but also
a large improvement on Portuguese (+1.7), although smaller
than using 4 languages plus ASR. When adding ASR data to
the 6 languages, we observe improvements in most languages,

De Nl Es Fr It Pt Ro Ru
Baseline
17.3 18.8 20.8 26.9 16.8 20.1 16.5 10.5
Multilingual

6 17.3 18.4 20.0 25.4 16.9 21.8 - -
8 16.5 17.8 18.9 24.5 16.2 20.8 15.9 9.8

+ ASR
6 17.4 19.2 19.7 26.0 17.2 21.8 - -
8 15.9 17.2 18.3 23.7 15.1 19.9 15.5 9.7

Table 3. BLEU score results for multilingual direct SLT sys-
tems with 6 and 8 target languages.

De Nl Es Fr It Pt
Baseline 17.3 18.8 20.8 26.9 16.8 20.1
M-Pre + ASR 17.7 20.0 20.9 26.5 18.0 22.6
BL-Cascade 18.5 22.2 22.5 27.9 18.9 21.5
M-Cascade 18.6 22.0 22.1 27.3 18.5 22.8
MT 25.3 30.3 29.9 35.5 25.8 31.1

Table 4. Comparison (BLEU scores) of the Baseline and
the best multilingual system with the single language cascade
(BL-Cascade) and the multilingual cascade (M-Cascade).

and the new system is worse than the baseline only for Span-
ish and French, although the gap for French has been reduced
to −0.9. However, using all the 8 target languages leads to
worse results and adding ASR data contributes to worsen the
performance in this case. We think that the reason is related to
the relatively low number of parameters of our models (∼ 33
millions), which reduce their capability to learn and discrim-
inate between a larger number of languages.
Comparison with cascade. In Table 4, we compare the sin-
gle and our best multilingual systems with two different cas-
cade models. One is BL-Cascade, in which the ASR system is
concatenated with MT systems individually trained for each
target language. The other is M-Cascade, where ASR is con-
catenated with a multilingual NMT model trained on all the
6 language pairs. As expected, our direct SLT baselines are
significantly worse than the BL-cascade systems with differ-
ences that range from −1.0 for French to −3.4 for Dutch.
Comparing the BL-Cascade with the M-Cascade systems, we
do not observe significant variations for the Germanic lan-
guages, but lower results in 3 out of 4 Romance languages
(−0.6 for French), with the single improvement of +1.3 for
Portuguese. Thus, multilingual MT generally affects nega-
tively the performance, being beneficial only for the lesser
resourced languages.

A comparison between our best multilingual SLT (M-Pre
+ ASR) and the cascade systems shows that our system is
able to reduce the gap between them. On Portuguese, it is on
par with M-Cascade and 1.1 BLEU points above BL-Cascade.
For Dutch, the target language with the largest initial gap, the
difference is reduced to 2 BLEU points, and for Italian it is
only 0.9 lower than the best cascade system (BL-Cascade).



De Nl Es Fr It Pt
M-Pre 95.7 98.5 97.2 94.6 95.3 96.6
M-Pre + ASR 96.1 98.7 97.9 95.3 95.4 95.2

Table 5. Percentage of sentences translated in the correct lan-
guage.

These results show that the multilingual SLT system is a valid
solution to enhance the performance of the end-to-end SLT
system and is able to reduce the gap with cascade architec-
tures. The last row of table 4 shows the results of the MT
components of the cascade, while the ASR WER is about
25% for all languages.
Language analysis. To better understand the behaviour of the
multilingual system, we used langdetect 3 to automatically
detect the language of each translated sentence. The results
listed in Table 5, show that our M-Pre systems do not translate
in the correct language in all the cases, although the percent-
age is higher than 95%. When using also ASR data, the per-
centage of outputs in the correct language increases slightly
in all languages except for Portuguese. However, these im-
provements do not correlate with the performance variations
measured in terms of BLEU score. This suggests thatBLEU
gains observed with M-Pre + ASR come from better transla-
tions rather than a higher number of sentences translated in
the correct target language.

6. DISCUSSION

The classic target forcing mechanism, which prepends the
language embedding in the input sequence and is widely used
in MT, resulted to be not effective for the SLT task. Our vari-
ation, which sums the language embedding to the entire input
representation, shows to be effective by imposing a sharper
distinction between encoder representations for different tar-
get languages. This allows us to reduce the gap in perfor-
mance with respect to a stronger cascade model. The actual
reasons of this behaviour will be further investigated in fu-
ture work, but here it is important to remark the differences
with multilingual works in MT and ASR to understand the
complexity of the SLT scenario. In MT, translations are per-
formed at BPE-level, which results in a shorter input sequence
than character-level, but also limits the vocabulary selection
for each target language. Moreover, character-level represen-
tations mean that most of the vocabulary is shared between
the languages, which can be a source of confusion. Multi-
lingual ASR shares with our task the mapping from audio to
text, with long sequences in the source side. However, the lan-
guage is the same in the source and target sides and, as such,
it is more difficult for the model to confuse the target lan-
guage. Toshniwal et al. [31] have shown that a Transformer
model trained on 9 Indian languages with different scripts

3https://github.com/shuyo/language-detection

outperforms monolingual baselines without any training trick,
and further improvements are obtained with the target forcing
mechanism. This case is significantly different from our task
where, without target forcing, the system has a probability of
1/N to translate into the correct language, with N being the
number of languages. Although these differences make mul-
tilingual SLT a challenging scenario, the results achieved by
our systems indicate that the lack of data can be overcome by
training a single multilingual model on more languages.

Our experiments have also shown, consistently with the
results in MT [29], that multilingual translation is particu-
larly beneficial for the less resourced language pairs. How-
ever, in order to obtain the best results, it is needed to keep
the number of target languages limited and train on similar
target languages. We have also found beneficial to use ASR
data together with the other translation data, and we are not
aware of works showing similar results on an MT task. The
reason of the significant performance drops when the num-
ber of languages increases is probably related to the model
capacity. Indeed, our models have ∼ 30 million parameters,
while large MT multilingual models can have one order of
magnitude more parameters. Unfortunately, due to the large
GPU memory occupation of SLT models, in particular with
Transformer, we could not perform experiments with larger
models.

7. CONCLUSIONS

We explored one-to-many multilingual speech translation as
a method to increase the training data size for direct speech
translation. Since in our experimental conditions MT-like tar-
get forcing often results in translation into a wrong language,
we proposed a variation that overcomes the problem. Our re-
sults show that this approach can produce important improve-
ments in the target languages with less data. Adding ASR
data to the training set allows the multilingual SLT system
to outperform baseline unidirectional (i.e. one-to-one) sys-
tems in 3 out of 6 target languages (the lesser-resourced ones)
with an improvement larger than 1 BLEU score point, and to
achieve comparable performance in the languages with more
data. When adding all the MuST-C target languages in a sin-
gle system, the performance degrades showing the difficulties
of the multilingual SLT model to manage an increasing num-
ber of unrelated target languages. In future work, we plan to
extend our method to many-to-many multilingual SLT, and to
investigate strategies that take into account the peculiarities of
this task, as well as evaluating the impact of model capacity
to manage more languages.
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