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SciPy is a library of numerical routines for the Python program-
ming language that provides fundamental building blocks 
for modeling and solving scientific problems. SciPy includes 

algorithms for optimization, integration, interpolation, eigenvalue 
problems, algebraic equations, differential equations and many 
other classes of problems; it also provides specialized data struc-
tures, such as sparse matrices and k-dimensional trees. SciPy is 
built on top of NumPy1,2, which provides array data structures and 
related fast numerical routines, and SciPy is itself the foundation 
upon which higher level scientific libraries, including scikit-learn3 
and scikit-image4, are built. Scientists, engineers and others around 
the world rely on SciPy. For example, published scripts5,6 used in 
the analysis of gravitational waves7,8 import several subpackages of 
SciPy, and the M87 black hole imaging project cites SciPy9.

Recently, SciPy released version 1.0, a milestone that traditionally 
signals a library’s API (application programming interface) being 
mature enough to be trusted in production pipelines. This version 
numbering convention, however, belies the history of a project that 

has become the standard others follow and has seen extensive adop-
tion in research and industry.

SciPy’s arrival at this point is surprising and somewhat anoma-
lous. When started in 2001, the library had little funding and was 
written mainly by graduate students—many of them without a 
computer science education and often without the blessing of their 
advisors. To even imagine that a small group of ‘rogue’ student pro-
grammers could upend the already well-established ecosystem of 
research software—backed by millions in funding and many hun-
dreds of highly qualified engineers10–12—was preposterous.

Yet the philosophical motivations behind a fully open tool 
stack, combined with an excited, friendly community with a sin-
gular focus, have proven auspicious in the long run. They led not 
only to the library described in this paper, but also to an entire 
ecosystem of related packages (https://wiki.python.org/moin/
NumericAndScientific) and a variety of social activities centered 
around them (https://wiki.python.org/moin/PythonConferences). 
The packages in the SciPy ecosystem share high standards of  
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implementation, documentation and testing, and a culture eager to 
learn and adopt better practices—both for community management 
and software development.

Background
Here we capture a selective history of some milestones and impor-
tant events in the growth of SciPy. Despite what we highlight here, it 
is important to understand that a project like SciPy is only possible 
because of the contributions of very many contributors—too many 
to mention individually, but each bringing an important piece to 
the puzzle.

Python is an interpreted, high-level, general-purpose computer 
programming language, designed by Guido van Rossum in the late 
1980s, with a dynamic type system and an emphasis on readability 
and rapid prototyping13 (https://github.com/python/cpython). As 
a general-purpose programming language, it had no special sup-
port for scientific data structures or algorithms, unlike many of the 
other established computation platforms of the time. Yet scientists 
soon discovered the language’s virtues, such as its ability to wrap C 
and Fortran libraries, and to then drive those libraries interactively. 
Scientists could thereby gain access to a wide variety of existing 
computational libraries without concerning themselves with low-
level programming concepts such as memory management.

In 1995, Jim Hugunin, a graduate student at the Massachusetts 
Institute of Technology, wrote the first message in a new Python 
Matrix Special Interest Group (Matrix-SIG) mailing list14:

“There seems to be a fair amount of interest in the Python com-
munity concerning the addition of numeric operations to Python. 
My own desire is to have as large a library of matrix based func-
tions available as possible (linear algebra, eigenfunctions, signal 
processing, statistics, etc.). In order to ensure that all of these 
libraries interoperate, there needs to be agreement on a basic  
matrix object that can be used to represent arrays of numbers.”

Over the next several months, conversations on that mailing list 
by, among others, Jim Fulton, Jim Hugunin, Paul Dubois, Konrad 
Hinsen and Guido van Rossum led to the creation of a package 
called Numeric with an array object that supported a high num-
ber of dimensions. Jim Hugunin explained the utility of Python for 
numerical computation15:

“I’ve used almost all of the available numerical languages at one 
time or another over the past 8 years. One thing I’ve noticed is 
that over time, the designers of these languages are steadily adding 
more of the features that one would expect to find in a general-
purpose programming language.”

This remains a distinguishing feature of Python for science and 
one of the reasons why it has been so successful in the realm of data 
science: instead of adding general features to a language designed 
for numerical and scientific computing, here scientific features are 
added to a general-purpose language. This broadens the scope of 
problems that can be addressed easily, expands the sources of data 
that are readily accessible and increases the size of the community 
that develops code for the platform.

SciPy begins. By the late 1990s, discussions appeared on Matrix-SIG 
expressing a desire for a complete scientific data analysis environ-
ment16. Travis Oliphant, a PhD student at the Mayo Clinic, released 
a number of packages17,18 that built on top of the Numeric array 
package, and provided algorithms for signal processing, special 
functions, sparse matrices, quadrature, optimization, fast Fourier 
transforms and more. One of these packages, Multipack (http://
pylab.sourceforge.net/multipack.html), was a set of extension mod-
ules that wrapped Fortran and C libraries to solve nonlinear equa-
tions and least-squares problems, integrate differential equations 
and fit splines. Robert Kern, then an undergraduate student (and 

currently a SciPy core developer), provided compilation instruc-
tions under Windows. Around the same time, Pearu Peterson, a 
PhD student from Estonia, released F2PY19, a command line tool 
for binding Python and Fortran codes, and wrote modules for linear 
algebra and interpolation. Eric Jones, while a graduate student at 
Duke University, wrote packages to support his dissertation, includ-
ing a parallel job scheduler and genetic optimizer. Gary Strangman, 
a postdoctoral fellow at Harvard Medical School, published several 
descriptive and inferential statistical routines20.

With a rich programming environment and a numerical array 
object in place, the time was ripe for the development of a full scien-
tific software stack. In 2001, Eric Jones and Travis Vaught founded 
Enthought Scientific Computing Solutions (now Enthought, Inc.) 
in Austin, Texas, USA. To simplify the tool stack, they created the 
SciPy project, centered around the SciPy library, which would sub-
sume all the above-mentioned packages. The new project quickly 
gained momentum, with a website and code repository21 appear-
ing in February, and a mailing list announced22 in June 2001. By 
August 2001, a first release was announced23, an excerpt of which 
is shown in Box 1. In September, the first documentation was pub-
lished24. The first SciPy workshop25 was held in September 2002 at 
Caltech—a single track, two-day event with 50 participants, many of 
them developers of SciPy and surrounding libraries.

At this point, scientific Python started attracting more serious 
attention; code that started as side projects by graduate students 
had grown into essential infrastructure at national laboratories 
and research institutes. For example, Paul Dubois at Lawrence 
Livermore National Laboratory (LLNL) took over the maintenance 
of Numeric and funded the writing of its manual26, and the Space 
Telescope Science Institute (STScI), which was in charge of Hubble 
Space Telescope science operations, decided to replace their custom 
scripting language and analysis pipeline with Python27. As STScI 
continued to use Python for an increasingly large portion of the 
Hubble Space Telescope data analysis pipeline, they encountered 
problems with the Python numerical array container. Numeric, the 
original array package, was suitable for small arrays, but not for the 
large images processed by STScI. With the Numeric maintainer’s 
blessing, the decision was made to write NumArray28, a library 
that could handle data on a larger scale. Unfortunately, NumArray 
proved inefficient for small arrays, presenting the community with 
a rather unfortunate choice. In 2005, Travis Oliphant combined 
the best elements of Numeric and NumArray, thereby solving the 

Box 1 | SciPy is an open-source package that builds on the 
strengths of Python and Numeric, providing a wide range of 
fast scientific and numeric functionality

SciPy’s current module set includes the following (text following 
the % symbol indicates that a typo in the original text has been 
corrected in the version reproduced here):

•	 Special functions (Bessel, Hankel, Airy and others) % hanker 
to Hankel

•	 Signal/image processing
•	 2D plotting capabilities
•	 Integration
•	 ODE solvers
•	 Optimization (simplex, BFGS, Newton-CG and others) % 

Netwon to Newton
•	 Genetic algorithms
•	 Numeric to C++ expression compiler
•	 Parallel programming tools
•	 Splines and interpolation
•	 Other items
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Box 2 | Package organization

The SciPy library is organized as a collection of subpackages. The 
16 subpackages include mathematical building blocks (for exam-
ple, linear algebra, Fourier transforms, special functions), data 
structures (for example, sparse matrices, k-D trees), algorithms 
(for example, numerical optimization and integration, clustering, 
interpolation, graph algorithms, computational geometry) and 
higher-level data analysis functionality (for example, signal and 
image processing, statistical methods).

Here we summarize the scope and capabilities of each 
subpackage. Additional information is available in the SciPy 
tutorial (https://docs.scipy.org/doc/scipy/reference/tutorial/) and 
API reference (https://docs.scipy.org/doc/scipy/reference/index.
html#api-reference).
cluster

The cluster subpackage contains cluster.vq, which 
provides vector quantization and k-means algorithms, and 
cluster.hierarchy, which provides functions for 
hierarchical and agglomerative clustering.
constants

Physical and mathematical constants, including the CODATA 
recommended values of the fundamental physical constants119.
fftpack

Fast Fourier Transform routines. In addition to the FFT itself, the 
subpackage includes functions for the discrete sine and cosine 
transforms and for pseudo-differential operators.
integrate

The integrate subpackage provides tools for the numerical 
computation of single and multiple definite integrals and for the 
solution of ordinary differential equations, including initial value 
problems and two-point boundary value problems.
interpolate

The interpolate subpackage contains spline functions and 
classes, one-dimensional and multi-dimensional (univariate 
and multivariate) interpolation classes, Lagrange and Taylor 
polynomial interpolators, and wrappers for FITPACK53 and 
DFITPACK functions.
io

A collection of functions and classes for reading and writing Matlab 
(https://www.mathworks.com/products/matlab.html), IDL, Matrix 
Market120, Fortran, NetCDF121, Harwell-Boeing122, WAV and ARFF 
data files.
linalg

Linear algebra functions, including elementary functions of 
a matrix, such as the trace, determinant, norm and condition 
number; basic solver for Ax = b; specialized solvers for Toeplitz 
matrices, circulant matrices, triangular matrices and other 
structured matrices; least-squares solver and pseudo-inverse 
calculations; eigenvalue and eigenvector calculations (basic and 
generalized); matrix decompositions, including Cholesky, Schur, 
Hessenberg, LU, LDLT, QR, QZ, singular value and polar; and 
functions to create specialized matrices, such as diagonal, Toeplitz, 
Hankel, companion, Hilbert and more.
ndimage

This subpackage contains various functions for multi-dimensional 
image processing, including convolution and assorted linear 
and nonlinear filter (Gaussian filter, median filter, Sobel filter 
and others); interpolation; region labeling and processing; and 
mathematical morphology functions.

misc

A collection of functions that did not fit into the other subpackages. 
Although this subpackage still exists in SciPy 1.0, an effort is 
underway to deprecate or relocate the contents of this subpackage 
and remove it.
odr

Orthogonal distance regression, including Python wrappers for 
the Fortran library ODRPACK54.
optimize

This subpackage includes simplex and interior-point linear 
programming solvers, implementations of many nonlinear 
minimization algorithms, a routine for least-squares curve fitting, 
and a collection of general nonlinear solvers for root-finding.
signal

The signal subpackage focuses on signal processing and basic 
linear systems theory. Functionality includes convolution and 
correlation, splines, filtering and filter design, continuous and 
discrete time linear systems, waveform generation, window 
functions, wavelet computations, peak finding and spectral analysis.
sparse

This subpackage includes implementations of several representations 
of sparse matrices. scipy.sparse.linalg provides a collection 
of linear algebra routines that work with sparse matrices, including 
linear equation solvers, eigenvalue decomposition, singular value 
decomposition and LU factorization. scipy.sparse.csgraph 
provides a collections of graph algorithms for which the graph is 
represented using a sparse matrix. Algorithms include connected 
components, shortest path, minimum spanning tree and more.
spatial

This subpackage provides spatial data structures and algorithms, 
including the k-d tree, Delaunay triangulation, convex hulls and 
Voronoi diagrams. scipy.spatial.distance provides a large 
collection of distance functions, along with functions for computing 
the distance between all pairs of vectors in a given collection of 
points or between all pairs from two collections of points.
special

The name comes from the class of functions traditionally known 
as special functions, but over time, the subpackage has grown to 
include functions beyond the classical special functions. A more 
appropriate characterization of this subpackage is simply useful 
functions. It includes a large collection of the classical special 
functions such as Airy, Bessel and others; families of orthogonal 
polynomials; the Gamma function, and functions related to it; 
functions for computing the PDF, CDF and quantile function for 
several probability distributions; information theory functions; 
combinatorial functions comb and factorial; and more.
stats

The stats subpackage provides a large collection of continuous 
and discrete probability distributions, each with methods to 
compute the PDF or PMF, CDF, moments and other statistics, 
generation of random variates and more; statistical tests, including 
tests on equality of means/medians/variance (such as the t-test) and 
tests whether a sample is drawn from a certain distribution (such as 
the Kolmogorov-Smirnov test); measures of correlation, including 
Pearson’s r, Kendall’s τ, and Spearman’s ρ coefficients; descriptive 
statistics including trimmed values; kernel density estimation; and 
transformations of data such as the Box-Cox power transformation.
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dilemma. NumPy 1.0 was released29 in October 2006, paving the 
way for the reunified scientific Python community to mature.

SciPy matures. By the middle to late 2000s, SciPy was starting to 
mature after a long phase of significant growth and adoption. The 
scope of the SciPy library narrowed, while the breadth of the eco-
system grew through a new type of auxiliary package: the scikit 
(https://www.scipy.org/scikits.html), a complementary library 
developed outside SciPy, allowing for more rapid exploration of 
experimental ideas while maintaining familiar style and develop-
ment methodology. In SciPy itself, tooling, development, documen-
tation and release processes became more professional. The library 
was expanded carefully, with the patience affordable in open-source 
projects and via best practices common in industry30.

Early versions of SciPy had minimal documentation, but this 
began to change with the 2006 release of a Guide to NumPy1. In 2007, 
Sphinx31 made it possible to render hypertext and PDF documents 
automatically from plain text (docstrings) interspersed with Python 
code, and in 2008, pydocweb32 enabled collaborative documenta-
tion development in a wiki-like fashion. The SciPy Documentation 
Project33,34 used these tools to complete documentation of SciPy’s 
user-facing functionality: offering t-shirts to contributors from 
around the world in exchange for high-quality text, it collected con-
tributions from over 75 people to produce an 884-page manual35. 
Since then, SciPy has remained committed to maintaining high-
quality documentation as part of the normal development cycle.

In the early SciPy workshops, recurrent topics reflected the state 
of development, with emphasis being placed on the underlying 
array package, plotting, parallel processing, acceleration/wrapping 
and user interfaces. By 2004, presentations about the application of 
SciPy to scientific problems began to appear. The event also started 
to draw in more keynote speakers from outside the community, 
such as Guido van Rossum (creator of Python, 2006), Ivan Krstić 
(One Laptop per Child, 2007), Alex Martelli (Google, 2008) and 
Peter Norvig (Google Research, 2009). The informal workshop grew 
from a small gathering of core developers into an international con-
ference with hundreds of attendees, increased funding, a published 
proceedings and scholarships for attending students. By 2010, the 
US SciPy conference had multiple tracks, and satellite conferences 
were being organized by volunteers elsewhere, such as EuroSciPy 
(since 2008) and SciPy India (since 2009). Special sessions and 
minisymposia dedicated to scientific Python began appearing at 
many other events. For example, a three-part minisymposium orga-
nized for International Conferences on Computational Science and 
Engineering (CSE) 2009 was featured in SIAM News36.

In 2007, Python had a strong enough presence in science and 
engineering that the editors of IEEE Computing in Science and 
Engineering solicited a special issue about Python in science37, 
edited by Paul Dubois. However, Python was still sufficiently niche 
that the average reader would need additional information to 
decide whether it would be useful in their own work. The follow-
up March/April 2011 Python for Scientists and Engineers special 
issue38 focused more on the core parts of the scientific Python eco-
system39 including NumPy2, Cython40 and Mayavi41. Python became 
so pervasive that journals began publishing domain-specific special 
issues. For example, in 2015, Frontiers in Neuroinformatics pub-
lished a collection of 25 articles—covering topics including model-
ing and simulation, data collection, electrophysiology, visualization 
as well as stimulus generation and presentation—called Python in 
Neuroscience42.

SciPy today. As of February 2019, the SciPy library consists of 
nearly 600,000 lines of open-source code organized in 16 subpack-
ages summarized in Box 2. The development team and community 
currently interact and operate primarily on GitHub, an online ver-
sion control and task management platform. Over 110,000 GitHub 

repositories and 6,500 packages depend on SciPy43. Some of the 
major feature highlights from the three years preceding SciPy 1.0 
are discussed in the “Key technical improvements” section below, 
and milestones in its history are highlighted in Fig. 1.

Architecture and implementation choices
Project scope. SciPy provides fundamental algorithms for scientific 
computing. The breadth of its scope was derived from the guide to 
available mathematical software (GAMS) classification system44. In 
areas that move relatively slowly, for example, linear algebra, SciPy 
aims to provide complete coverage. In other areas it aims to pro-
vide fundamental building blocks while interacting well with other 
packages specialized in that area. For example, SciPy provides what 
one expects to find in a statistics textbook (probability distribu-
tions, hypothesis tests, frequency statistics, correlation functions, 
and more), whereas Statsmodels45 provides more advanced statisti-
cal estimators and inference methods, scikit-learn3 covers machine 
learning, and PyMC346, emcee47 and PyStan (http://mc-stan.org) 
cover Bayesian statistics and probabilistic modeling. scikit-image4 
provides image processing capabilities beyond SciPy’s ndimage, 
SymPy48 provides a Python interface for symbolic computation, and 
sparse.csgraph and spatial offer basic tools for working 
with graphs and networks compared to specialized libraries such as 
NetworkX49.

We use the following criteria to determine whether to include 
new functionality in SciPy:

•	 The algorithm is of relevance to multiple fields of science.
•	 The algorithm is demonstrably important. For example, it is 

classic enough to be included in textbooks, or it is based on a 
peer-reviewed article that has a substantial number of citations.

In terms of software systems and architecture, SciPy’s scope 
matches NumPy’s: algorithms for in-memory computing on  
single machines, with support for a wide range of data types and 
process architectures. Distributed computing and support for 
graphics processing units (GPUs) were explicitly out of scope at 
the 1.0 release point, but this has been revised in our roadmap (see 
Discussion).

Language choices. According to analysis using the linguistli-
brary (https://github.com/github/linguist), SciPy is approximately 
50% Python, 25% Fortran, 20% C, 3% Cython and 2% C++, with a 
dash of TeX, Matlab, shell script and Make. The distribution of sec-
ondary programming languages in SciPy is a compromise between 
a powerful, performance-enhancing language that interacts well 
with Python (that is, Cython) and the usage of languages (and 
their libraries) that have proven reliable and performant over many 
decades.

Fortran, despite its age, is still a high-performance scientific pro-
gramming language with continued contemporary usage50. Thus, 
we wrap the following excellent, field-tested Fortran libraries to 
provide Python convenience while benefiting from their perfor-
mance: QUADPACK51 and ODEPACK52 for numerical integration 
and solution of initial value problems; FITPACK53, ODRPACK54 
and MINPACK55 for curve-fitting and least-squares minimization; 
FFTPACK56,57 for performing Fourier transforms; ARPACK58 for 
solving eigenvalue problems; ALGORITHM 644 (ref. 59) for com-
puting Bessel functions; and CDFLIB60 for evaluating cumulative 
density functions.

Rounding out the top three languages in SciPy is C, which is 
also extremely well-established over several decades61 of scientific 
computing. The C libraries that we wrap in SciPy include trlib62 for 
optimization, SuperLU63,64 for solving sparse linear systems, Qhull65 
for computational geometry and Cephes (http://www.netlib.org/
cephes/) for special functions.
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Cython has been described as a creole language that mixes the 
best parts of Python and lower-level C/C++ paradigms40. We often 
use Cython as a glue between well-established, low-level scien-
tific computing libraries written in C/C++ and the Python inter-
face offered by SciPy. We also use Cython to enable performance 
enhancements in Python code, especially for cases where heavily 
used inner loops benefit from a compiled code with static typing.

For implementing new functionality, Python is the still the lan-
guage of choice. If Python performance is an issue, then we prefer 
the use of Cython followed by C, C++ or Fortran (in that order). The 
main motivation for this is maintainability: Cython has the highest 
abstraction level, and most Python developers will understand it. C 
is also widely known, and easier for the current core development 
team to manage than C++ and especially Fortran.

The position that SciPy occupies near the foundation of the sci-
entific Python ecosystem is such that adoption of new languages or 
major dependencies is generally unlikely; our choices are strongly 
driven by long-term stability. GPU acceleration, new transpiling 
libraries and the latest JIT compilation approaches (for example, 
Numba66) are very powerful but have traditionally fallen outside 
the remit of the main SciPy library. That said, we have recently 
increased our efforts to support compatibility with some of these 
options, and our full test suite passed with the PyPy JIT compiler67 
at the 1.0 release point.

API and ABI evolution. The API for SciPy consists of approxi-
mately 1,500 functions and classes. Our policy for evolving the API 
over time is that new functionality can be added, while removing 
or changing existing functionality can only be done if the benefits 
exceed the (often significant) costs to users and only after giving clear 
deprecation warnings to those users for at least one year. In general, 
we encourage changes that improve clarity in the API of the library 
but strongly discourage breaking backward compatibility, given our 
position near the base of the scientific Python computing stack.

In addition to the Python API, SciPy has C and Cython inter-
faces. Therefore, we also have to consider the application binary 
interface (ABI). This ABI has been stable for a long time, and we 
aim to evolve it only in a backward-compatible way.

Key technical improvements
Here we describe key technical improvements made in the last three 
years.

Data structures. Sparse matrices. scipy.sparse offers seven sparse 
matrix data structures, also known as sparse formats. The most 
important ones are the row- and column-compressed formats (CSR 
and CSC, respectively). These offer fast major-axis indexing and 
fast matrix-vector multiplication, and are used heavily throughout 
SciPy and dependent packages.

Over the last three years, our sparse matrix handling internals 
were rewritten and performance was improved. Iterating over and 
slicing of CSC and CSR matrices is now up to 35% faster, and the 

speed of coordinate (COO)/diagonal (DIA) to CSR/CSC matrix 
format conversions has increased. SuperLU63 was updated to ver-
sion 5.2.1, enhancing the low-level implementations leveraged by a 
subset of our sparse offerings.

From a new features standpoint, scipy.sparse matrices 
and linear operators now support the Python matrix multiplication 
(@) operator. We added scipy.sparse.norm and scipy.
sparse.random for computing sparse matrix norms and draw-
ing random variates from arbitrary distributions, respectively. Also, 
we made a concerted effort to bring the scipy.sparse API into 
line with the equivalent NumPy API where possible.

cKDTree. The scipy.spatial.ckdtree module, which 
implements a space-partitioning data structure that organizes 
points in k-dimensional space, was rewritten in C++ with tem-
plated classes. Support was added for periodic boundary conditions, 
which are often used in simulations of physical processes.

In 2013, the time complexity of the k-nearest-neighbor search 
from cKDTree.query was approximately loglinear68, consistent 
with its formal description69. Since then, we enhanced cKDTree.
query by reimplementing it in C++, removing memory leaks and 
allowing release of the global interpreter lock (GIL) so that multiple 
threads may be used70. This generally improved performance on any 
given problem while preserving the asymptotic complexity.

In 2015, SciPy added the sparse_distance_matrix rou-
tine for generating approximate sparse distance matrices between 
KDTree objects by ignoring all distances that exceed a user-
provided value. This routine is not limited to the conventional L2 
(Euclidean) norm but supports any Minkowski p-norm between 1 
and infinity. By default, the returned data structure is a dictionary of 
keys (DOK)-based sparse matrix, which is very efficient for matrix 
construction. This hashing approach to sparse matrix assembly can 
be seven times faster than constructing with CSR format71, and the 
C++ level sparse matrix construction releases the Python GIL for 
increased performance. Once the matrix is constructed, distance 
value retrieval has an amortized constant time complexity72, and the 
DOK structure can be efficiently converted to a CSR, CSC or COO 
matrix to allow for speedy arithmetic operations.

In 2015, the cKDTree dual tree counting algorithm73 was 
enhanced to support weights74, which are essential in many scien-
tific applications, for example, computing correlation functions of 
galaxies75.

Unified bindings to compiled code. LowLevelCallable. As of SciPy 
version 0.19, it is possible for users to wrap low-level functions in 
a scipy.LowLevelCallable object that reduces the over-
head of calling compiled C functions, such as those generated using 
Numba or Cython, directly from Python. Supported low-level func-
tions include PyCapsule objects, ctypes function pointers and 
cffi function pointers. Furthermore, it is possible to generate a 
low-level callback function automatically from a Cython module 
using scipy.LowLevelCallable.from_cython.

SciPy 0.1 released Creation of SciKits
Development moves

to GitHub

scipy.sparse.csgraph
scipy.optimize.minimize

2001

2005

2007

2008 2010 2013 2015

2017

Transition to NumPy
First Cython code,

scipy.spatial

Move to 6-month
release cycles

Continuous integration
with TravisCI

Cython interface
for BLAS/LAPACK

SciPy 1.0 released

2011 2012

Fig. 1 | Major milestones from SciPy’s initial release in 2001 to the release of SciPy 1.0 in 2017. Note that SciKits and GitHub have been introduced 
in the Background section; more information about Cython and SciPy subpackages (for example, scipy.sparse) is available in the ‘Architecture and 
implementation choices’ section, BLAS/LAPACK support is detailed in the ‘Key technical improvements’ section, and continuous integration is discussed 
in the ‘Test and benchmark suite’ section.
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Cython bindings for BLAS, LAPACK and special. SciPy has pro-
vided special functions and leveraged basic linear algebra subpro-
grams (BLAS) and linear algebra package (LAPACK)76 routines for 
many years. SciPy now additionally includes Cython40 wrappers for 
many BLAS and LAPACK routines (added in 2015) and the special 
functions provided in the scipy.special subpackage (added in 
2016), which are available in scipy.linalg.cython_blas, 
scipy.linalg.cython_lapack and scipy.special.
cython_special, respectively. When writing algorithms in 
Cython, it is typically more efficient to call directly into the librar-
ies SciPy wraps rather than indirectly, using SciPy’s Python APIs. 
These low-level interfaces for Cython can also be used outside of 
the SciPy codebase to gain access to the functions in the wrapped 
libraries while avoiding the overhead of Python function calls. This 
can give performance gains of one or two orders of magnitude for 
many use cases.

Developers can also use the low-level Cython interfaces without 
linking against the wrapped libraries77. This lets other extensions 
avoid the complexity of finding and using the correct libraries. 
Avoiding this complexity is especially important when wrapping 
libraries written in Fortran. Not only can these low-level wrappers 
be used without a Fortran compiler, they can also be used without 
having to handle all the different Fortran compiler ABIs and name 
mangling schemes.

Most of these low-level Cython wrappers are generated automat-
ically to help with both correctness and ease of maintenance. The 
wrappers for BLAS and LAPACK are primarily generated using type 
information that is parsed from the BLAS and LAPACK source files 
using F2PY19, though a small number of routines use hand-written 
type signatures instead. The input and output types of each routine 
are saved in a data file that is read at build time and used to generate 
the corresponding Cython wrapper files. The wrappers in scipy.
special.cython_special are also generated from a data file 
containing type information for the wrapped routines.

Since SciPy can be built with LAPACK 3.4.0 or later, Cython wrap-
pers are only provided for the routines that maintain a consistent  

interface across all supported LAPACK versions. The standard 
BLAS interface provided by the various existing BLAS libraries is 
not currently changing, so changes are not generally needed in the 
wrappers provided by SciPy. Changes to the Cython wrappers for 
the functions in scipy.special follow corresponding changes 
to the interface of that subpackage.

Numerical optimization. The scipy.optimize subpackage 
provides functions for the numerical solution of several classes of 
root finding and optimization problems. Here we highlight recent 
additions through SciPy 1.0.

Linear optimization. A new interior-point optimizer for continu-
ous linear programming problems, linprog with method = 
’interior-point’, was released with SciPy 1.0. Implementing 
the core algorithm of the commercial solver MOSEK78, it solves all 
of the 90+ NETLIB LP benchmark problems79 tested. Unlike some 
interior point methods, this homogeneous self-dual formulation pro-
vides certificates of infeasibility or unboundedness as appropriate.

A presolve routine80 solves trivial problems and otherwise per-
forms problem simplifications, such as bound tightening and 
removal of fixed variables, and one of several routines for elimi-
nating redundant equality constraints is automatically chosen 
to reduce the chance of numerical difficulties caused by singular 
matrices. Although the main solver implementation is pure Python, 
end-to-end sparse matrix support and heavy use of SciPy’s compiled 
linear system solvers—often for the same system with multiple right 
hand sides owing to the predictor-corrector approach—provide 
speed sufficient for problems with tens of thousands of variables 
and constraints.

Nonlinear optimization: local minimization. The minimize func-
tion provides a unified interface for finding local minima of nonlin-
ear optimization problems. Four new methods for unconstrained 
optimization were added to minimize in recent versions of SciPy: 
dogleg, trust-ncg, trust-exact and trust-krylov. 

Table 1 | Optimization methods from minimize

_Nelder-
Mead

Powell COBYLA CG BFGS L-BFGS-G SLSQP TNC Newton-
CG

dogleg trust-
ncg

trust-
exact

trust-
Krylov

Version added 0.6* 0.6* 0.6* 0.6* 0.6* 0.6* 0.9 0.6* 0.6* 0.13 0.13 0.19 1.0

Wrapper ✓ ✓ ✓ ✓ ✓

First derivatives ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Second derivatives ~ ~ ~ ✓ ✓ ✓ ✓ ✓ ✓

Iterative Hessian 
factorization

✓ ✓ ✓ ✓

Local convergence L S L S S* S* Q S* Q S*

Global convergence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trust region Neither LS TR LS LS LS LS LS LS TR TR TR TR

Bound constraints ✓ ✓ ✓ ✓

Equality constraints ✓

Inequality constraint ✓ ✓

References 98,99 100 101–103 104,105 105 106,107 108–111 112 105 105,113 105,114 115,116 62,117

Optimization methods from minimize, which solves problems of the form minxf xð Þ
I

, where x 2 Rn

I
 and f : Rn ! R

I
. ‘Version added’ specifies the algorithm’s first appearance in SciPy. 

Algorithms with version added “0.6*” were added in version 0.6 or before. ‘Wrapper’ indicates whether the implementation available in SciPy wraps a function written in a compiled language (for example, C or 
FORTRAN). ‘First and second derivatives’ indicate whether first or second order derivatives are required. When ‘second derivatives’ is flagged with ‘~’, the algorithm accepts but does not require second-order 
derivatives from the user; it computes an approximation internally and uses it to accelerate method convergence. ‘Iterative Hessian factorization’ denotes algorithms that factorize the Hessian in an iterative 
way, which does not require explicit matrix factorization or storage of the Hessian. ‘Local convergence’ gives a lower bound on the rate of convergence of the iteration sequence once the iterate is sufficiently 
close to the solution: linear (L), superlinear (S) and quadratic (Q). Convergence rates denoted S* indicate that the algorithm has a superlinear rate for the parameters used in SciPy, but can achieve a quadratic 
convergence rate with other parameter choices. ‘Global convergence’ is marked for the algorithms with guarantees of convergence to a stationary point (that is, a point x* for which ∇f x*ð Þ ¼ 0

I
); this 

is not a guarantee of convergence to a global minimum. ‘Lines-search’ (LS) or ‘trust-region’ (TR) indicates which of the two globalization approaches is used by the algorithm. The table also indicates which 

algorithms can deal with constraints on the variables. We distinguish among bound constraints (xl≤x≤xu
I

), equality constraints (ceq xð Þ ¼ 0
I

) and inequality constraints (cineq xð Þ≥0
I

).
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All are trust-region methods that build a local model of the objec-
tive function based on first and second derivative information, 
approximate the best point within a local ‘trust region’ and iterate 
until a local minimum of the original objective function is reached, 
but each has unique characteristics that make it appropriate for 
certain types of problems. For instance, trust-exact achieves 
fast convergence by solving the trust-region subproblem almost 
exactly, but it requires the second derivative Hessian matrix to be 
stored and factored every iteration, which may preclude the solu-
tion of large problems (≥1,000 variables). In contrast, trust-ncg 
and trust-krylov are well suited to large-scale optimization 
problems because they do not need to store and factor the Hessian 
explicitly, instead using second derivative information in a faster, 
approximate way. We compare the characteristics of all minimize 
methods in detail in Table 1, which illustrates the level of complete-
ness that SciPy aims for when covering a numerical method or topic.

Nonlinear optimization: global minimization. As minimize may 
return any local minimum, some problems require the use of a 
global optimization routine. The new scipy.optimize.dif-
ferentialevolution function81,82 is a stochastic global opti-
mizer that works by evolving a population of candidate solutions. 
In each iteration, trial candidates are generated by combination 
of candidates from the existing population. If the trial candidates 
represent an improvement, then the population is updated. Most 
recently, the SciPy benchmark suite gained a comprehensive set of 
196 global optimization problems for tracking the performance of 
existing solvers over time and for evaluating whether the perfor-
mance of new solvers merits their inclusion in the package.

Statistical distributions. The scipy.stats subpackage con-
tains more than 100 probability distributions: 96 continuous and 13 
discrete univariate distributions, and 10 multivariate distributions. 
The implementation relies on a consistent framework that provides 
methods to sample random variates, to evaluate the cumulative 
distribution function (CDF) and the probability density function 
(PDF), and to fit parameters for every distribution. Generally, the 
methods rely on specific implementations for each distribution, 
such as a closed-form expression of the CDF or a sampling algo-
rithm, if available. Otherwise, default methods are used based on 
generic code, for example, numerical integration of the PDF to 
obtain the CDF. Key recent distributions added to scipy.stats 
include the histogram-based distribution in scipy.stats.
rv_histogram and the multinomial distribution in scipy.

stats.multinomial (used, for example, in natural language 
processing83).

Polynomial interpolators. Historically, SciPy relied heavily on the 
venerable FITPACK Fortran library by P. Dierckx53,84 for univariate 
interpolation and approximation of data, but the original mono-
lithic design and API for interaction between SciPy and FITPACK 
was limiting for both users and developers.

Implementing a new, modular design of polynomial interpola-
tors was spread over several releases. The goals of this effort were 
to have a set of basic objects representing piecewise polynomials, to 
implement a collection of algorithms for constructing various inter-
polators, and to provide users with building blocks for constructing 
additional interpolators.

At the lowest level of the new design are classes that represent 
univariate piecewise polynomials: PPoly (SciPy 0.13)85, BPoly 
(SciPy 0.13) and BSpline (SciPy 0.19)86, which allow efficient 
vectorized evaluations, differentiation, integration and root-find-
ing. PPoly represents piecewise polynomials in the power basis 
in terms of breakpoints and coefficients at each interval. BPoly is 
similar and represents piecewise polynomials in the Bernstein basis 
(which is suitable, for example, for constructing Bézier curves). 
BSpline represents spline curves, that is, linear combinations of 
B-spline basis elements87.

In the next layer, these polynomial classes are used to construct 
several common ways of interpolating data: CubicSpline (SciPy 
0.18)88 constructs a twice differentiable piecewise cubic function, 
Akima1DInterpolator and PCHIPInterpolator imple-
ment two classic prescriptions for constructing a C1 continuous 
monotone shape-preserving interpolator89,90.

Test and benchmark suite. Test suite. Test-driven development has 
been described as a way to manage fear and uncertainty when mak-
ing code changes91. For each component of SciPy, we write multiple 
small executable tests that verify its intended behavior. The collec-
tion of these, known as a ‘test suite’, increases confidence in the cor-
rectness and accuracy of the library, and allows us to make code 
modifications known not to alter desired behavior. According to 
the practice of continuous integration92, all proposed contributions 
to SciPy are temporarily integrated with the master branch of the 
library before the test suite is run, and all tests must be passed before 
the contribution is permanently merged. Continuously monitoring 
the number of lines of code in SciPy covered by unit tests is one way 
we maintain some certainty that changes and new features are cor-
rectly implemented.

The SciPy test suite is orchestrated by a continuous integration 
matrix that includes POSIX and Windows (32/64-bit) platforms 
managed by Travis CI and AppVeyor, respectively. Our tests cover 
Python versions 2.7, 3.4, 3.5, 3.6, and include code linting with 
pyflakes and pycodestyle. There are more than 13,000 unit 
tests in the test suite, which is written for usage with the pytest 
(https://docs.pytest.org/en/latest) framework. In Fig. 2, we show 
historical test coverage data generated using a Docker-based 
approach (https://github.com/tylerjereddy/scipy-cov-track). With 
the exception of the removal of ∼61,000 lines of compiled code for 
SciPy v0.14, the volume of both compiled (C, C++ and Fortran) 
and Python code has increased between releases, as have the num-
ber of lines covered by unit tests. Test coverage at the SciPy 1.0 
release point was at 87% for Python code according to pytest-
cov (https://pypi.org/project/pytest-cov/). Coverage of compiled 
(C, C++ and Fortran) code was only 45% according to gcov 
(https://gcc.gnu.org/onlinedocs/gcc/Gcov.html), but the compiled 
codebase is much more robust than this figure would suggest as 
the figure does not correct for the inclusion of reputable vendor 
code, the original library of which is well-tested; generated code, for 
which full coverage is impractical; and deprecated code, which does 
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not require unit tests. Documentation for the code is automatically 
built and published by the CircleCI service to facilitate evaluation of 
documentation changes/integrity.

Benchmark suite. In addition to ensuring that unit tests are pass-
ing, it is important to confirm that the performance of the SciPy 
codebase improves over time. Since February 2015, the perfor-
mance of SciPy has been monitored with Airspeed Velocity (asv 
https://github.com/airspeed-velocity/asv). SciPy’s run.py script 
conveniently wraps asv features such that benchmark results over 
time can be generated with a single console command. For exam-
ple, in Fig. 3 we illustrate the improvement of scipy.spatial.
cKDTree.query over roughly nine years of project history. The 
tree used in the benchmark was generated without application of 
toroidal topology (boxsize = None), and tests were performed 
by Airspeed Velocity 0.4 using Python 2.7, NumPy 1.8.2 and Cython 
versions 0.27.3, 0.21.1 and 0.18 (for improved backward compat-
ibility). Substantial performance improvements were realized when 
cKDTree was fully Cythonized and again when it was rewritten in 
C++.

Project organization and community
Governance. SciPy adopted an official governance document 
(https://docs.scipy.org/doc/scipy/reference/dev/governance/gover-
nance.html) on August 3, 2017. A steering council, currently com-
posed of 18 members, oversees daily development of the project by 
contributing code and reviewing contributions from the commu-
nity. Council members have commit rights to the project reposi-
tory, but they are expected to merge changes only when there are no 
substantive community objections. The chair of the steering coun-
cil, Ralf Gommers, is responsible for initiating biannual technical 
reviews of project direction and summarizing any private council 
activities to the broader community. The project’s benevolent dicta-
tor for life, Pauli Virtanen, has overruling authority on any matter, 
but is expected to act in good faith and only exercise this authority 
when the steering council cannot reach agreement.

SciPy’s official code of conduct was approved on October 24, 
2017. In summary, there are five specific guidelines: be open to 
everyone participating in our community; be empathetic and 
patient in resolving conflicts; be collaborative, as we depend on 
each other to build the library; be inquisitive, as early identifica-
tion of issues can prevent serious consequences; and be careful with  
wording. The code of conduct specifies how breaches can be 
reported to a code of conduct committee and outlines procedures 

for the committee’s response. Our diversity statement “welcomes 
and encourages participation by everyone.”

Maintainers and contributors. The SciPy project has ~100 unique 
contributors for every 6-month release cycle. Anyone with the inter-
est and skills can become a contributor; the SciPy developer guide 
(http://scipy.github.io/devdocs/dev/core-dev/index.html) provides 
guidance on how to do that. In addition, the project currently has 
15 active (volunteer) maintainers: people who review the contribu-
tions of others and do everything else needed to ensure that the soft-
ware and the project move forward. Maintainers are critical to the 
health of the project93; their skills and efforts largely determine how 
fast the project progresses, and they enable input from the much 
larger group of contributors. Anyone can become a maintainer, too, 
as they are selected on a rolling basis from contributors with a sub-
stantial history of high-quality contributions.

Funding. The development cost of SciPy is estimated in excess of 
10 million dollars by Open Hub (https://www.openhub.net/p/scipy/
estimated_cost). Yet the project is largely unfunded, having been 
developed predominantly by graduate students, faculty and mem-
bers of industry in their free time. Small amounts of funding have 
been applied with success: some meetings were sponsored by uni-
versities and industry, Google’s Summer of Code program supported 
infrastructure and algorithm work, and teaching grant funds were 
used early on to develop documentation. However, funding from 
national agencies, foundations and industry has not been commen-
surate with the enormous stack of important software that relies on 
SciPy. More diverse spending to support planning, development, 
management and infrastructure would help SciPy remain a healthy 
underpinning of international scientific and industrial endeavors.

Downstream projects. The scientific Python ecosystem includes 
many examples of domain-specific software libraries building on 
top of SciPy features and then returning to the base SciPy library to 
suggest and even implement improvements. For example, there are 
common contributors to the SciPy and Astropy core libraries94, and 
what works well for one of the codebases, infrastructures or com-
munities is often transferred in some form to the other. At the code-
base level, the binned_statistic functionality is one such 
cross-project contribution: it was initially developed in an Astropy-
affiliated package and then placed in SciPy afterward. In this per-
spective, SciPy serves as a catalyst for cross-fertilization throughout 
the Python scientific computing community.
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cKDTree rewritten in C++

SciPy 1.0 released
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Fig. 3 | Results of the scipy.spatial.cKDTree.query benchmark from the introduction of cKDTree to the release of SciPy 1.0. The benchmark generates a 
k-d tree from uniformly distributed points in an m-dimensional unit hypercube, then finds the nearest (Euclidean) neighbor in the tree for each of 1,000 
query points. Each marker in the figure indicates the execution time of the benchmark for a commit in the master branch of SciPy.
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Discussion
SciPy has a strong developer community and a massive user base. 
GitHub traffic metrics report roughly 20,000 unique visitors to the 
source website between 14 May 2018 and 27 May 2018 (near the 
time of writing), with 721 unique copies (‘clones’) of the codebase 
over that time period. The developer community at that time con-
sisted of 610 unique contributors of source code, with more than 
19,000 commits accepted into the codebase (GitHub page data).

From the user side, there were 13,096,468 downloads of SciPy 
from the Python Packaging Index (PyPI)95 and 5,776,017 via the 
default channel of the conda (https://github.com/ContinuumIO/
anaconda-package-data) package manager during the year 2017. 
These numbers establish a lower bound on the total number of 
downloads by users given that PyPI and conda are only two of sev-
eral popular methods for installing SciPy. The SciPy website (http://
www.scipy.org/), which has been the default citation in the absence 
of a peer-reviewed paper, has been cited over 3,000 times (https://
scholar.google.com/scholar?q=SciPy). Some of the most prominent 
uses of or demonstrations of credibility for SciPy include the LIGO-
Virgo scientific collaboration that lead to the observation of gravi-
tational waves96, the fact that SciPy is shipped directly with macOS 
and in the Intel distribution for Python97, and that SciPy is used by 
47% of all machine learning projects on GitHub (https://github.
blog/2019-01-24-the-state-of-the-octoverse-machine-learning/).

Nevertheless, SciPy continually strives to improve. The SciPy 
Roadmap (https://docs.scipy.org/doc/scipy-1.0.0/reference/road-
map.html, https://scipy.github.io/devdocs/roadmap.html), sum-
marized in Table 2, is a continually updated document maintained 
by the community that describes some of the major directions for 
improvement for the project, as well as specific limitations and 
matters that require assistance moving forward. In addition to the 
items on the roadmap, we are still working to increase the num-
ber of SciPy usage tutorials beyond our current 15 section offering. 

Also, the low-level Cython code in our library (which interacts with 
C-level code and exposes it for Python usage) could use some mea-
sure of modernization, including migration to typed memoryviews 
to handle NumPy arrays.

A problem faced by many open-source projects is attracting and 
retaining developers. Although it is normal for some individuals to 
contribute to a project for a while and then move on, too much turn-
over can result in the loss of institutional memory, leading to mistakes 
of the past being repeated, APIs of new code becoming inconsistent 
with the old code and a drifting project scope. We are fortunate that 
the SciPy project continues to attract enthusiastic and competent new 
developers while maintaining the involvement of a small but dedi-
cated old guard. There are contributors who were present in the early 
years of the project who still contribute to discussions of bug reports 
and reviews of new code contributions. Our benevolent dictator for 
life has been with the project for more than 10 years and is still actively 
contributing code, and the head of our steering council, who also acts 
as a general manager, is approaching his eleventh anniversary. An 
additional half dozen or so active developers have been contributing 
steadily for five or more years. The combination of a committed old 
guard and a host of new contributors ensures that SciPy will continue 
to grow while maintaining a high level of quality.

A final important challenge to address is the accommodation of 
GPU and distributed computing without disrupting our conven-
tional and heavily used algorithm/API infrastructure. Although the 
exact approach we will adopt across the entire library to leverage 
these emerging technologies remains unclear, and was not a priority 
at the 1.0 release point, we now have a concrete implementation of 
a subpackage that allows for the experimental use of multiple back-
ends, such as GPU-tractable data structures, in the new scipy.
fft. This will be described in detail in a future report.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.

Data availability
Raw data for Fig. 2 are available at https://github.com/tylerjereddy/
scipy-cov-track, and raw data for Fig. 3 are available at https://
github.com/scipy/scipy-articles/tree/master/scipy-1.0/supporting_
info/asv_bench/cKDTree.

Code availability
All SciPy library source code is available in the SciPy GitHub repos-
itory, https://github.com/scipy/scipy.
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Table 2 | Summary of SciPy Roadmap items following 1.0 
release

SciPy subpackage Summary of change

Optimize A few more high-quality global optimizers

Fftpack Reduce overlap with NumPy equivalent
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2)')%!)%5!=��'88!)')%!)%5'8'#'80! !>5�#9%�3)*'))* 9�88�6%#&%) 3!'� "� ! #)%#)* 9%&(� 8 & #$>)'/8 8 & #$>3'%#) C)>��D )*�$!! 5)%�#;#E'��#9%�3 $<*  C'5)!'3"8 !%F +G,9�� '5* C" �%3 #)'8&��("E5�#$%)%�#>&%7 #'!'$%!5� ) #(3/ �'#$(#%)�93 '!(� 3 #)?!)') 3 #)�#6* )* �3 '!(� 3 #)!6 � )': #9��3$%!)%#5)!'3"8 !��6* )* �)* !'3 !'3"8 6'!3 '!(� $� " ') $80<* !)')%!)%5'8) !)+!,(! $?4H6* )* �)* 0'� �# I��)6�I!%$ $JGKLMNOPPOGMQRSQSMSTOUKVMWRMVRSNXYWRVMSOKRKLMWLMGZPR[MVRSNXYWRMPOXRMNOP\KR]MQRNTGŶURSMYGMQTRM_RQTOVSMSRNQYOG̀?$ !5�%")%�#�9'885�7'�%') !) !) $?$ !5�%")%�#�9'#0'!!(3")%�#!��5��� 5)%�#!>!(5*'!) !)!�9#��3'8%)0'#$'$a(!)3 #)9��3(8)%"8 5�3"'�%!�#!?9(88$ !5�%")%�#�9)* !)')%!)%5'8"'�'3 ) �!%#58($%#&5 #)�'8) #$ #50+ ;&;3 '#!,���)* �/'!%5 !)%3') !+ ;&;� &� !!%�#5� 99%5% #),?4H7'�%')%�#+ ;&;!)'#$'�$$ 7%')%�#,��'!!�5%') $ !)%3') !�9(#5 �)'%#)0+ ;&;5�#9%$ #5 %#) �7'8!,=��#(88*0"�)* !%!) !)%#&>)* ) !)!)')%!)%5+ ;&;b>Q>X,6%)*5�#9%$ #5 %#) �7'8!> 99 5)!%F !>$ &�  !�99�  $�3'#$c7'8( #�) $dYeRMcMeZKURSMZSMR]ZNQMeZKURSMfTRGReRXMSUYQZWKR̀=��g'0 !%'#'#'80!%!>%#9��3')%�#�#)* 5*�%5 �9"�%��!'#$D'�:�75*'%#D�#) �'�8�! ))%#&!=��*% �'�5*%5'8'#$5�3"8 C$ !%&#!>%$ #)%9%5')%�#�9)* '""��"�%') 8 7 89��) !)!'#$9(88� "��)%#&�9�()5�3 !A!)%3') !�9 99 5)!%F !+ ;&;��* #h!V>B '�!�#h!X,>%#$%5')%#&*�6)* 06 � 5'85(8') $JUXMfRWMNOKKRNQYOGMOGMSQZQYSQYNSMiOXMWYOKOjYSQSMNOGQZYGSMZXQYNKRSMOGMPZGLMOiMQTRM\OYGQSMZWOeR̀2�9)6'� '#$5�$ B�8%50%#9��3')%�#'/�()'7'%8'/%8%)0�95�3"() �5�$ H')'5�88 5)%�#

H')''#'80!%!=��3'#(!5�%")!()%8%F%#&5(!)�3'8&��%)*3!��!�9)6'� )*')'� 5 #)�'8)�)* � ! '�5*/()#�)0 )$ !5�%/ $%#"(/8%!* $8%) �')(� >!�9)6'� 3(!)/ 3'$ '7'%8'/8 )� $%)��!E� 7% 6 �!;k !)��#&80 #5�(�'& 5�$ $ "�!%)%�#%#'5�33(#%)0� "�!%)��0+ ;&;l%)m(/,;2  )* 4')(� 1 ! '�5*&(%$ 8%# !9��!(/3%))%#&5�$ @!�9)6'� 9��9(�)* �%#9��3')%�#;H')'B�8%50%#9��3')%�#'/�()'7'%8'/%8%)0�9$')'?883'#(!5�%")!3(!)%#58($ '$')''7'%8'/%8%)0!)') 3 #);<*%!!)') 3 #)!*�(8$"��7%$ )* 9�88�6%#&%#9��3')%�#>6* � '""8%5'/8 -I?55 !!%�#5�$ !>(#%n( %$ #)%9% �!>��6 /8%#:!9��"(/8%580'7'%8'/8 $')'! )!I?8%!)�99%&(� !)*')*'7 '!!�5%') $�'6$')'I?$ !5�%")%�#�9'#0� !)�%5)%�#!�#$')''7'%8'/%8%)0

1'89l�33 �!>D'))m'/ �8'#$><08 �1 $$0opEqErpos

tt
t
tt
t
t
ttt

.'#&('& 5*�%5 $')'6'!5�88 5) $(!%#&)* 8%#&(%!)8%/�'�0>'#$%#"'�)%5(8'�(!%#&'!" 5%'89 ')(� /�'#5*�9)*%!"��a 5))*')%!�" #80'7'%8'/8 -*))"!-EE&%)*(/;5�3E&%)*(/E8%#&(%!)E"(88EuovoH')'9��=%&(� r6'!5�88 5) $(!%#&)* "0) !)I5�7'#$&5�7"'5:'& !wH�5: �6'!(! $)�3'#'& 5�#)'%# �!@)*  C'5)!�(�5 5�$ (! $%!�" #80'7'%8'/8 -*))"!-EE&%)*(/;5�3E)08 �a � $$0E!5%"0I5�7I)�'5:H')'9��9%&(� x6'!5�88 5) $(!%#&)* ?%�!"  $y 8�5%)0+'!77 �!%�#p;u,"'5:'& II!  )* %��" #80'7'%8'/8 � "�!%)��0-*))"!-EE&%)*(/;5�3E'%�!"  $I7 8�5%)0E'!74?

?8825%B08%/�'�0!�(�5 5�$ '#$3�!)$')'& # �') $9��)* 5(�� #)!)($0'� '7'%8'/8 %#)* 25%B0l%)m(/� "�!%)��0>*))"!-EE&%)*(/;5�3E!5%"0;2�3 !(""��)%#&5�$ '#$$')'*'7 '8!�/  #!)�� $%#�)* �"(/8%5� "�!%)��% !5%) $/0)*%!3'#(!5�%");



z

������������	
����
������������
�����������

=% 8$I!" 5%9%5� "��)%#&B8 '! ! 8 5))* �# / 8�6)*')%!)* / !)9%)9��0�(�� ! '�5*;{90�('� #�)!(� >� '$)* '""��"�%') ! 5)%�#!/ 9�� 3':%#&0�(�! 8 5)%�#;.%9 !5% #5 ! g *'7%�(�'8@!�5%'8!5% #5 ! A5�8�&%5'8> 7�8()%�#'�0@ #7%��#3 #)'8!5% #5 !=��'� 9 � #5 5�"0�9)* $�5(3 #)6%)*'88! 5)%�#!>!  #')(� ;5�3E$�5(3 #)!E#�I� "��)%#&I!(33'�0I98');"$9.%9 !5% #5 !!)($0$ !%&#?88!)($% !3(!)$%!58�! �#)* ! "�%#)! 7 #6* #)* $%!58�!(� %!# &')%7 ;2'3"8 !%F 
H')' C58(!%�#!
1 "8%5')%�#
1'#$�3%F')%�#
g8%#$%#&
g *'7%�(�'8@!�5%'8!5% #5 !!)($0$ !%&#?88!)($% !3(!)$%!58�! �#)* ! "�%#)! 7 #6* #)* $%!58�!(� %!# &')%7 ;2)($0$ !5�%")%�#
1 ! '�5*!'3"8 
2'3"8%#&!)�') &0
H')'5�88 5)%�#
<%3%#&H')' C58(!%�#!
4�#I"'�)%5%"')%�#
1'#$�3%F')%�#
A5�8�&%5'8> 7�8()%�#'�0@ #7%��#3 #)'8!5% #5 !!)($0$ !%&#?88!)($% !3(!)$%!58�! �#)* ! "�%#)! 7 #6* #)* $%!58�!(� %!# &')%7 ;2)($0$ !5�%")%�#

|RSNXYWRMTOfMSZP\KRMSY}RMfZSMVRQRXPYGRV~MVRQZYKYGjMZGLMSQZQYSQYNZKMPRQTOVSMUSRVMQOM\XRVRQRXPYGRMSZP\KRMSY}RMJ�MYiMGOMSZP\KR�SY}RMNZKNUKZQYOGMfZSM\RXiOXPRV~MVRSNXYWRMTOfMSZP\KRMSY}RSMfRXRMNTOSRGMZGVM\XOeYVRMZMXZQYOGZKRMiOXMfTLMQTRSRMSZP\KRMSY}RSMZXRMSUiiYNYRGQ̀|RSNXYWRMZGLMVZQZMR]NKUSYOGS̀M�iMGOMVZQZMfRXRMR]NKUVRVMiXOPMQTRMZGZKLSRS~MSQZQRMSOMJ�MYiMVZQZMfRXRMR]NKUVRV~MVRSNXYWRMQTRMR]NKUSYOGSMZGVMQTRMXZQYOGZKRMWRTYGVMQTRP~MYGVYNZQYGjMfTRQTRXMR]NKUSYOGMNXYQRXYZMfRXRM\XR�RSQZWKYSTRV̀M|RSNXYWRMQTRMPRZSUXRSMQZ�RGMQOMeRXYiLMQTRMXR\XOVUNYWYKYQLMOiMQTRMR]\RXYPRGQZKMiYGVYGjS̀M�iMZKKMZQQRP\QSMZQMXR\KYNZQYOGMfRXRMSUNNRSSiUK~MNOGiYXPMQTYSMJ�MYiMQTRXRMZXRMZGLMiYGVYGjSMQTZQMfRXRMGOQMXR\KYNZQRVMOXMNZGGOQMWRMXR\XOVUNRV~MGOQRMQTYSMZGVMVRSNXYWRMfTL̀|RSNXYWRMTOfMSZP\KRS�OXjZGYSPS�\ZXQYNY\ZGQSMfRXRMZKKONZQRVMYGQOMR]\RXYPRGQZKMjXOU\S̀M�iMZKKONZQYOGMfZSMGOQMXZGVOP~MVRSNXYWRMTOfMNOeZXYZQRSMfRXRMNOGQXOKKRVMJ�MYiMQTYSMYSMGOQMXRKReZGQMQOMLOUXMSQUVL~MR]\KZYGMfTL̀|RSNXYWRMfTRQTRXMQTRMYGeRSQYjZQOXSMfRXRMWKYGVRVMQOMjXOU\MZKKONZQYOGMVUXYGjMVZQZMNOKKRNQYOGMZGV�OXMZGZKLSYS̀M�iMWKYGVYGjMfZSMGOQM\OSSYWKR~MVRSNXYWRMfTLMJ�MR]\KZYGMfTLMWKYGVYGjMfZSMGOQMXRKReZGQMQOMLOUXMSQUVL̀
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