
Perspective
https://doi.org/10.1038/s41592-019-0686-2

1University of Jyväskylä, Jyväskylä, Finland. 2Quansight LLC, Austin, TX, USA. 3Ultrasound Imaging, Mayo Clinic, Rochester, MN, USA. 4Electrical
Engineering, Brigham Young University, Provo, UT, USA. 5Enthought, Inc., Austin, TX, USA. 6Anaconda Inc., Austin, TX, USA. 7BioResource and Agricultural
Engineering Department, California Polytechnic State University, San Luis Obispo, CA, USA. 8Department of Mathematics, University of California Los
Angeles, Los Angeles, CA, USA. 9Los Alamos National Laboratory, Los Alamos, NM, USA. 10Independent researcher, Tokyo, Japan. 11Higher School of
Economics, Moscow, Russia. 12Independent researcher, Saue, Estonia. 13Department of Mechanics and Applied Mathematics, Institute of Cybernetics
at Tallinn Technical University, Tallinn, Estonia. 14Berkeley Institute for Data Science, University of California Berkeley, Berkeley, CA, USA. 15Independent
researcher, New York, NY, USA. 16School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK. 17Independent researcher, San Francisco,
CA, USA. 18Division of Biostatistics, University of California Berkeley, Berkeley, CA, USA. 19WayRay LLC, Skolkovo Innovation Center, Moscow, Russia.
20Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia. 21Institute for Learning and Brain Sciences, University
of Washington, Seattle, WA, USA. 22College of Information and Computing Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
23Independent researcher, Amsterdam, the Netherlands. 24Berkeley Center for Cosmological Physics, University of California Berkeley, Berkeley, CA, USA.
25Bruker Biospin Corp., Billerica, MA, USA. 26University of Washington, Seattle, WA, USA. 27Independent researcher, Toulouse, France. 28Independent
researcher, Montreal, Quebec, Canada. 29New Technologies Research Centre, University of West Bohemia, Plzeň, Czech Republic. 30Department of
Mathematics, Brigham Young University, Provo, UT, USA. 31Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin,
Austin, TX, USA. 32Independent researcher, Belmont, Massachusetts, USA. 33Space Dynamics Laboratory, North Logan, UT, USA. 34Independent researcher,
Logan, Utah, USA. 35Anton Pannekoek Institute, Amsterdam, The Netherlands. 36Graduate Program in Electrical Engineering, Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil. 37Google LLC, Montreal, Quebec, Canada. 38Google LLC, Cambridge, MA, USA. 39A list of members and affiliations
appears at the end of the paper. *e-mail: scipy.articles@gmail.com

SciPy is a library of numerical routines for the Python program-
ming language that provides fundamental building blocks
for modeling and solving scientific problems. SciPy includes

algorithms for optimization, integration, interpolation, eigenvalue
problems, algebraic equations, differential equations and many
other classes of problems; it also provides specialized data struc-
tures, such as sparse matrices and k-dimensional trees. SciPy is
built on top of NumPy1,2, which provides array data structures and
related fast numerical routines, and SciPy is itself the foundation
upon which higher level scientific libraries, including scikit-learn3
and scikit-image4, are built. Scientists, engineers and others around
the world rely on SciPy. For example, published scripts5,6 used in
the analysis of gravitational waves7,8 import several subpackages of
SciPy, and the M87 black hole imaging project cites SciPy9.

Recently, SciPy released version 1.0, a milestone that traditionally
signals a library’s API (application programming interface) being
mature enough to be trusted in production pipelines. This version
numbering convention, however, belies the history of a project that

has become the standard others follow and has seen extensive adop-
tion in research and industry.

SciPy’s arrival at this point is surprising and somewhat anoma-
lous. When started in 2001, the library had little funding and was
written mainly by graduate students—many of them without a
computer science education and often without the blessing of their
advisors. To even imagine that a small group of ‘rogue’ student pro-
grammers could upend the already well-established ecosystem of
research software—backed by millions in funding and many hun-
dreds of highly qualified engineers10–12—was preposterous.

Yet the philosophical motivations behind a fully open tool
stack, combined with an excited, friendly community with a sin-
gular focus, have proven auspicious in the long run. They led not
only to the library described in this paper, but also to an entire
ecosystem of related packages (https://wiki.python.org/moin/
NumericAndScientific) and a variety of social activities centered
around them (https://wiki.python.org/moin/PythonConferences).
The packages in the SciPy ecosystem share high standards of

SciPy 1.0: fundamental algorithms for scientific
computing in Python
Pauli Virtanen1, Ralf Gommers   2*, Travis E. Oliphant2,3,4,5,6, Matt Haberland   7,8, Tyler Reddy   9,
David Cournapeau10, Evgeni Burovski11, Pearu Peterson12,13, Warren Weckesser14, Jonathan Bright15,
Stéfan J. van der Walt   14, Matthew Brett16, Joshua Wilson17, K. Jarrod Millman   14,18,
Nikolay Mayorov19, Andrew R. J. Nelson   20, Eric Jones5, Robert Kern5, Eric Larson21, C J Carey22,
İlhan Polat23, Yu Feng24, Eric W. Moore25, Jake VanderPlas26, Denis Laxalde   27, Josef Perktold28,
Robert Cimrman29, Ian Henriksen6,30,31, E. A. Quintero32, Charles R. Harris33,34, Anne M. Archibald35,
Antônio H. Ribeiro   36, Fabian Pedregosa37, Paul van Mulbregt   38 and SciPy 1.0 Contributors39

SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy
has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thou-
sands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide
an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.

Nature Methods | www.nature.com/naturemethods

mailto:scipy.articles@gmail.com
https://wiki.python.org/moin/NumericAndScientific
https://wiki.python.org/moin/NumericAndScientific
https://wiki.python.org/moin/PythonConferences
http://orcid.org/0000-0002-0300-3333
http://orcid.org/0000-0003-4806-3601
http://orcid.org/0000-0003-2364-6157
http://orcid.org/0000-0001-9276-1891
http://orcid.org/0000-0002-5263-5070
http://orcid.org/0000-0002-4548-3558
http://orcid.org/0000-0002-5540-4825
http://orcid.org/0000-0003-3632-8529
http://orcid.org/0000-0002-2382-8308
http://www.nature.com/naturemethods

Perspective NaTure MeThodS

implementation, documentation and testing, and a culture eager to
learn and adopt better practices—both for community management
and software development.

Background
Here we capture a selective history of some milestones and impor-
tant events in the growth of SciPy. Despite what we highlight here, it
is important to understand that a project like SciPy is only possible
because of the contributions of very many contributors—too many
to mention individually, but each bringing an important piece to
the puzzle.

Python is an interpreted, high-level, general-purpose computer
programming language, designed by Guido van Rossum in the late
1980s, with a dynamic type system and an emphasis on readability
and rapid prototyping13 (https://github.com/python/cpython). As
a general-purpose programming language, it had no special sup-
port for scientific data structures or algorithms, unlike many of the
other established computation platforms of the time. Yet scientists
soon discovered the language’s virtues, such as its ability to wrap C
and Fortran libraries, and to then drive those libraries interactively.
Scientists could thereby gain access to a wide variety of existing
computational libraries without concerning themselves with low-
level programming concepts such as memory management.

In 1995, Jim Hugunin, a graduate student at the Massachusetts
Institute of Technology, wrote the first message in a new Python
Matrix Special Interest Group (Matrix-SIG) mailing list14:

“There seems to be a fair amount of interest in the Python com-
munity concerning the addition of numeric operations to Python.
My own desire is to have as large a library of matrix based func-
tions available as possible (linear algebra, eigenfunctions, signal
processing, statistics, etc.). In order to ensure that all of these
libraries interoperate, there needs to be agreement on a basic
matrix object that can be used to represent arrays of numbers.”

Over the next several months, conversations on that mailing list
by, among others, Jim Fulton, Jim Hugunin, Paul Dubois, Konrad
Hinsen and Guido van Rossum led to the creation of a package
called Numeric with an array object that supported a high num-
ber of dimensions. Jim Hugunin explained the utility of Python for
numerical computation15:

“I’ve used almost all of the available numerical languages at one
time or another over the past 8 years. One thing I’ve noticed is
that over time, the designers of these languages are steadily adding
more of the features that one would expect to find in a general-
purpose programming language.”

This remains a distinguishing feature of Python for science and
one of the reasons why it has been so successful in the realm of data
science: instead of adding general features to a language designed
for numerical and scientific computing, here scientific features are
added to a general-purpose language. This broadens the scope of
problems that can be addressed easily, expands the sources of data
that are readily accessible and increases the size of the community
that develops code for the platform.

SciPy begins. By the late 1990s, discussions appeared on Matrix-SIG
expressing a desire for a complete scientific data analysis environ-
ment16. Travis Oliphant, a PhD student at the Mayo Clinic, released
a number of packages17,18 that built on top of the Numeric array
package, and provided algorithms for signal processing, special
functions, sparse matrices, quadrature, optimization, fast Fourier
transforms and more. One of these packages, Multipack (http://
pylab.sourceforge.net/multipack.html), was a set of extension mod-
ules that wrapped Fortran and C libraries to solve nonlinear equa-
tions and least-squares problems, integrate differential equations
and fit splines. Robert Kern, then an undergraduate student (and

currently a SciPy core developer), provided compilation instruc-
tions under Windows. Around the same time, Pearu Peterson, a
PhD student from Estonia, released F2PY19, a command line tool
for binding Python and Fortran codes, and wrote modules for linear
algebra and interpolation. Eric Jones, while a graduate student at
Duke University, wrote packages to support his dissertation, includ-
ing a parallel job scheduler and genetic optimizer. Gary Strangman,
a postdoctoral fellow at Harvard Medical School, published several
descriptive and inferential statistical routines20.

With a rich programming environment and a numerical array
object in place, the time was ripe for the development of a full scien-
tific software stack. In 2001, Eric Jones and Travis Vaught founded
Enthought Scientific Computing Solutions (now Enthought, Inc.)
in Austin, Texas, USA. To simplify the tool stack, they created the
SciPy project, centered around the SciPy library, which would sub-
sume all the above-mentioned packages. The new project quickly
gained momentum, with a website and code repository21 appear-
ing in February, and a mailing list announced22 in June 2001. By
August 2001, a first release was announced23, an excerpt of which
is shown in Box 1. In September, the first documentation was pub-
lished24. The first SciPy workshop25 was held in September 2002 at
Caltech—a single track, two-day event with 50 participants, many of
them developers of SciPy and surrounding libraries.

At this point, scientific Python started attracting more serious
attention; code that started as side projects by graduate students
had grown into essential infrastructure at national laboratories
and research institutes. For example, Paul Dubois at Lawrence
Livermore National Laboratory (LLNL) took over the maintenance
of Numeric and funded the writing of its manual26, and the Space
Telescope Science Institute (STScI), which was in charge of Hubble
Space Telescope science operations, decided to replace their custom
scripting language and analysis pipeline with Python27. As STScI
continued to use Python for an increasingly large portion of the
Hubble Space Telescope data analysis pipeline, they encountered
problems with the Python numerical array container. Numeric, the
original array package, was suitable for small arrays, but not for the
large images processed by STScI. With the Numeric maintainer’s
blessing, the decision was made to write NumArray28, a library
that could handle data on a larger scale. Unfortunately, NumArray
proved inefficient for small arrays, presenting the community with
a rather unfortunate choice. In 2005, Travis Oliphant combined
the best elements of Numeric and NumArray, thereby solving the

Box 1 | SciPy is an open-source package that builds on the
strengths of Python and Numeric, providing a wide range of
fast scientific and numeric functionality

SciPy’s current module set includes the following (text following
the % symbol indicates that a typo in the original text has been
corrected in the version reproduced here):

•	 Special functions (Bessel, Hankel, Airy and others) % hanker
to Hankel

•	 Signal/image processing
•	 2D plotting capabilities
•	 Integration
•	 ODE solvers
•	 Optimization (simplex, BFGS, Newton-CG and others) %

Netwon to Newton
•	 Genetic algorithms
•	 Numeric to C++ expression compiler
•	 Parallel programming tools
•	 Splines and interpolation
•	 Other items

Nature Methods | www.nature.com/naturemethods

https://github.com/python/cpython
http://pylab.sourceforge.net/multipack.html
http://pylab.sourceforge.net/multipack.html
http://www.nature.com/naturemethods

PerspectiveNaTure MeThodS

Box 2 | Package organization

The SciPy library is organized as a collection of subpackages. The
16 subpackages include mathematical building blocks (for exam-
ple, linear algebra, Fourier transforms, special functions), data
structures (for example, sparse matrices, k-D trees), algorithms
(for example, numerical optimization and integration, clustering,
interpolation, graph algorithms, computational geometry) and
higher-level data analysis functionality (for example, signal and
image processing, statistical methods).

Here we summarize the scope and capabilities of each
subpackage. Additional information is available in the SciPy
tutorial (https://docs.scipy.org/doc/scipy/reference/tutorial/) and
API reference (https://docs.scipy.org/doc/scipy/reference/index.
html#api-reference).
cluster

The cluster subpackage contains cluster.vq, which
provides vector quantization and k-means algorithms, and
cluster.hierarchy, which provides functions for
hierarchical and agglomerative clustering.
constants

Physical and mathematical constants, including the CODATA
recommended values of the fundamental physical constants119.
fftpack

Fast Fourier Transform routines. In addition to the FFT itself, the
subpackage includes functions for the discrete sine and cosine
transforms and for pseudo-differential operators.
integrate

The integrate subpackage provides tools for the numerical
computation of single and multiple definite integrals and for the
solution of ordinary differential equations, including initial value
problems and two-point boundary value problems.
interpolate

The interpolate subpackage contains spline functions and
classes, one-dimensional and multi-dimensional (univariate
and multivariate) interpolation classes, Lagrange and Taylor
polynomial interpolators, and wrappers for FITPACK53 and
DFITPACK functions.
io

A collection of functions and classes for reading and writing Matlab
(https://www.mathworks.com/products/matlab.html), IDL, Matrix
Market120, Fortran, NetCDF121, Harwell-Boeing122, WAV and ARFF
data files.
linalg

Linear algebra functions, including elementary functions of
a matrix, such as the trace, determinant, norm and condition
number; basic solver for Ax = b; specialized solvers for Toeplitz
matrices, circulant matrices, triangular matrices and other
structured matrices; least-squares solver and pseudo-inverse
calculations; eigenvalue and eigenvector calculations (basic and
generalized); matrix decompositions, including Cholesky, Schur,
Hessenberg, LU, LDLT, QR, QZ, singular value and polar; and
functions to create specialized matrices, such as diagonal, Toeplitz,
Hankel, companion, Hilbert and more.
ndimage

This subpackage contains various functions for multi-dimensional
image processing, including convolution and assorted linear
and nonlinear filter (Gaussian filter, median filter, Sobel filter
and others); interpolation; region labeling and processing; and
mathematical morphology functions.

misc

A collection of functions that did not fit into the other subpackages.
Although this subpackage still exists in SciPy 1.0, an effort is
underway to deprecate or relocate the contents of this subpackage
and remove it.
odr

Orthogonal distance regression, including Python wrappers for
the Fortran library ODRPACK54.
optimize

This subpackage includes simplex and interior-point linear
programming solvers, implementations of many nonlinear
minimization algorithms, a routine for least-squares curve fitting,
and a collection of general nonlinear solvers for root-finding.
signal

The signal subpackage focuses on signal processing and basic
linear systems theory. Functionality includes convolution and
correlation, splines, filtering and filter design, continuous and
discrete time linear systems, waveform generation, window
functions, wavelet computations, peak finding and spectral analysis.
sparse

This subpackage includes implementations of several representations
of sparse matrices. scipy.sparse.linalg provides a collection
of linear algebra routines that work with sparse matrices, including
linear equation solvers, eigenvalue decomposition, singular value
decomposition and LU factorization. scipy.sparse.csgraph
provides a collections of graph algorithms for which the graph is
represented using a sparse matrix. Algorithms include connected
components, shortest path, minimum spanning tree and more.
spatial

This subpackage provides spatial data structures and algorithms,
including the k-d tree, Delaunay triangulation, convex hulls and
Voronoi diagrams. scipy.spatial.distance provides a large
collection of distance functions, along with functions for computing
the distance between all pairs of vectors in a given collection of
points or between all pairs from two collections of points.
special

The name comes from the class of functions traditionally known
as special functions, but over time, the subpackage has grown to
include functions beyond the classical special functions. A more
appropriate characterization of this subpackage is simply useful
functions. It includes a large collection of the classical special
functions such as Airy, Bessel and others; families of orthogonal
polynomials; the Gamma function, and functions related to it;
functions for computing the PDF, CDF and quantile function for
several probability distributions; information theory functions;
combinatorial functions comb and factorial; and more.
stats

The stats subpackage provides a large collection of continuous
and discrete probability distributions, each with methods to
compute the PDF or PMF, CDF, moments and other statistics,
generation of random variates and more; statistical tests, including
tests on equality of means/medians/variance (such as the t-test) and
tests whether a sample is drawn from a certain distribution (such as
the Kolmogorov-Smirnov test); measures of correlation, including
Pearson’s r, Kendall’s τ, and Spearman’s ρ coefficients; descriptive
statistics including trimmed values; kernel density estimation; and
transformations of data such as the Box-Cox power transformation.

Nature Methods | www.nature.com/naturemethods

https://docs.scipy.org/doc/scipy/reference/tutorial/
https://docs.scipy.org/doc/scipy/reference/index.html#api-reference
https://docs.scipy.org/doc/scipy/reference/index.html#api-reference
https://www.mathworks.com/products/matlab.html
http://www.nature.com/naturemethods

Perspective NaTure MeThodS

dilemma. NumPy 1.0 was released29 in October 2006, paving the
way for the reunified scientific Python community to mature.

SciPy matures. By the middle to late 2000s, SciPy was starting to
mature after a long phase of significant growth and adoption. The
scope of the SciPy library narrowed, while the breadth of the eco-
system grew through a new type of auxiliary package: the scikit
(https://www.scipy.org/scikits.html), a complementary library
developed outside SciPy, allowing for more rapid exploration of
experimental ideas while maintaining familiar style and develop-
ment methodology. In SciPy itself, tooling, development, documen-
tation and release processes became more professional. The library
was expanded carefully, with the patience affordable in open-source
projects and via best practices common in industry30.

Early versions of SciPy had minimal documentation, but this
began to change with the 2006 release of a Guide to NumPy1. In 2007,
Sphinx31 made it possible to render hypertext and PDF documents
automatically from plain text (docstrings) interspersed with Python
code, and in 2008, pydocweb32 enabled collaborative documenta-
tion development in a wiki-like fashion. The SciPy Documentation
Project33,34 used these tools to complete documentation of SciPy’s
user-facing functionality: offering t-shirts to contributors from
around the world in exchange for high-quality text, it collected con-
tributions from over 75 people to produce an 884-page manual35.
Since then, SciPy has remained committed to maintaining high-
quality documentation as part of the normal development cycle.

In the early SciPy workshops, recurrent topics reflected the state
of development, with emphasis being placed on the underlying
array package, plotting, parallel processing, acceleration/wrapping
and user interfaces. By 2004, presentations about the application of
SciPy to scientific problems began to appear. The event also started
to draw in more keynote speakers from outside the community,
such as Guido van Rossum (creator of Python, 2006), Ivan Krstić
(One Laptop per Child, 2007), Alex Martelli (Google, 2008) and
Peter Norvig (Google Research, 2009). The informal workshop grew
from a small gathering of core developers into an international con-
ference with hundreds of attendees, increased funding, a published
proceedings and scholarships for attending students. By 2010, the
US SciPy conference had multiple tracks, and satellite conferences
were being organized by volunteers elsewhere, such as EuroSciPy
(since 2008) and SciPy India (since 2009). Special sessions and
minisymposia dedicated to scientific Python began appearing at
many other events. For example, a three-part minisymposium orga-
nized for International Conferences on Computational Science and
Engineering (CSE) 2009 was featured in SIAM News36.

In 2007, Python had a strong enough presence in science and
engineering that the editors of IEEE Computing in Science and
Engineering solicited a special issue about Python in science37,
edited by Paul Dubois. However, Python was still sufficiently niche
that the average reader would need additional information to
decide whether it would be useful in their own work. The follow-
up March/April 2011 Python for Scientists and Engineers special
issue38 focused more on the core parts of the scientific Python eco-
system39 including NumPy2, Cython40 and Mayavi41. Python became
so pervasive that journals began publishing domain-specific special
issues. For example, in 2015, Frontiers in Neuroinformatics pub-
lished a collection of 25 articles—covering topics including model-
ing and simulation, data collection, electrophysiology, visualization
as well as stimulus generation and presentation—called Python in
Neuroscience42.

SciPy today. As of February 2019, the SciPy library consists of
nearly 600,000 lines of open-source code organized in 16 subpack-
ages summarized in Box 2. The development team and community
currently interact and operate primarily on GitHub, an online ver-
sion control and task management platform. Over 110,000 GitHub

repositories and 6,500 packages depend on SciPy43. Some of the
major feature highlights from the three years preceding SciPy 1.0
are discussed in the “Key technical improvements” section below,
and milestones in its history are highlighted in Fig. 1.

Architecture and implementation choices
Project scope. SciPy provides fundamental algorithms for scientific
computing. The breadth of its scope was derived from the guide to
available mathematical software (GAMS) classification system44. In
areas that move relatively slowly, for example, linear algebra, SciPy
aims to provide complete coverage. In other areas it aims to pro-
vide fundamental building blocks while interacting well with other
packages specialized in that area. For example, SciPy provides what
one expects to find in a statistics textbook (probability distribu-
tions, hypothesis tests, frequency statistics, correlation functions,
and more), whereas Statsmodels45 provides more advanced statisti-
cal estimators and inference methods, scikit-learn3 covers machine
learning, and PyMC346, emcee47 and PyStan (http://mc-stan.org)
cover Bayesian statistics and probabilistic modeling. scikit-image4
provides image processing capabilities beyond SciPy’s ndimage,
SymPy48 provides a Python interface for symbolic computation, and
sparse.csgraph and spatial offer basic tools for working
with graphs and networks compared to specialized libraries such as
NetworkX49.

We use the following criteria to determine whether to include
new functionality in SciPy:

•	 The algorithm is of relevance to multiple fields of science.
•	 The algorithm is demonstrably important. For example, it is

classic enough to be included in textbooks, or it is based on a
peer-reviewed article that has a substantial number of citations.

In terms of software systems and architecture, SciPy’s scope
matches NumPy’s: algorithms for in-memory computing on
single machines, with support for a wide range of data types and
process architectures. Distributed computing and support for
graphics processing units (GPUs) were explicitly out of scope at
the 1.0 release point, but this has been revised in our roadmap (see
Discussion).

Language choices. According to analysis using the linguistli-
brary (https://github.com/github/linguist), SciPy is approximately
50% Python, 25% Fortran, 20% C, 3% Cython and 2% C++, with a
dash of TeX, Matlab, shell script and Make. The distribution of sec-
ondary programming languages in SciPy is a compromise between
a powerful, performance-enhancing language that interacts well
with Python (that is, Cython) and the usage of languages (and
their libraries) that have proven reliable and performant over many
decades.

Fortran, despite its age, is still a high-performance scientific pro-
gramming language with continued contemporary usage50. Thus,
we wrap the following excellent, field-tested Fortran libraries to
provide Python convenience while benefiting from their perfor-
mance: QUADPACK51 and ODEPACK52 for numerical integration
and solution of initial value problems; FITPACK53, ODRPACK54
and MINPACK55 for curve-fitting and least-squares minimization;
FFTPACK56,57 for performing Fourier transforms; ARPACK58 for
solving eigenvalue problems; ALGORITHM 644 (ref. 59) for com-
puting Bessel functions; and CDFLIB60 for evaluating cumulative
density functions.

Rounding out the top three languages in SciPy is C, which is
also extremely well-established over several decades61 of scientific
computing. The C libraries that we wrap in SciPy include trlib62 for
optimization, SuperLU63,64 for solving sparse linear systems, Qhull65
for computational geometry and Cephes (http://www.netlib.org/
cephes/) for special functions.

Nature Methods | www.nature.com/naturemethods

https://www.scipy.org/scikits.html
http://mc-stan.org
https://github.com/github/linguist
http://www.netlib.org/cephes/
http://www.netlib.org/cephes/
http://www.nature.com/naturemethods

PerspectiveNaTure MeThodS

Cython has been described as a creole language that mixes the
best parts of Python and lower-level C/C++ paradigms40. We often
use Cython as a glue between well-established, low-level scien-
tific computing libraries written in C/C++ and the Python inter-
face offered by SciPy. We also use Cython to enable performance
enhancements in Python code, especially for cases where heavily
used inner loops benefit from a compiled code with static typing.

For implementing new functionality, Python is the still the lan-
guage of choice. If Python performance is an issue, then we prefer
the use of Cython followed by C, C++ or Fortran (in that order). The
main motivation for this is maintainability: Cython has the highest
abstraction level, and most Python developers will understand it. C
is also widely known, and easier for the current core development
team to manage than C++ and especially Fortran.

The position that SciPy occupies near the foundation of the sci-
entific Python ecosystem is such that adoption of new languages or
major dependencies is generally unlikely; our choices are strongly
driven by long-term stability. GPU acceleration, new transpiling
libraries and the latest JIT compilation approaches (for example,
Numba66) are very powerful but have traditionally fallen outside
the remit of the main SciPy library. That said, we have recently
increased our efforts to support compatibility with some of these
options, and our full test suite passed with the PyPy JIT compiler67
at the 1.0 release point.

API and ABI evolution. The API for SciPy consists of approxi-
mately 1,500 functions and classes. Our policy for evolving the API
over time is that new functionality can be added, while removing
or changing existing functionality can only be done if the benefits
exceed the (often significant) costs to users and only after giving clear
deprecation warnings to those users for at least one year. In general,
we encourage changes that improve clarity in the API of the library
but strongly discourage breaking backward compatibility, given our
position near the base of the scientific Python computing stack.

In addition to the Python API, SciPy has C and Cython inter-
faces. Therefore, we also have to consider the application binary
interface (ABI). This ABI has been stable for a long time, and we
aim to evolve it only in a backward-compatible way.

Key technical improvements
Here we describe key technical improvements made in the last three
years.

Data structures. Sparse matrices. scipy.sparse offers seven sparse
matrix data structures, also known as sparse formats. The most
important ones are the row- and column-compressed formats (CSR
and CSC, respectively). These offer fast major-axis indexing and
fast matrix-vector multiplication, and are used heavily throughout
SciPy and dependent packages.

Over the last three years, our sparse matrix handling internals
were rewritten and performance was improved. Iterating over and
slicing of CSC and CSR matrices is now up to 35% faster, and the

speed of coordinate (COO)/diagonal (DIA) to CSR/CSC matrix
format conversions has increased. SuperLU63 was updated to ver-
sion 5.2.1, enhancing the low-level implementations leveraged by a
subset of our sparse offerings.

From a new features standpoint, scipy.sparse matrices
and linear operators now support the Python matrix multiplication
(@) operator. We added scipy.sparse.norm and scipy.
sparse.random for computing sparse matrix norms and draw-
ing random variates from arbitrary distributions, respectively. Also,
we made a concerted effort to bring the scipy.sparse API into
line with the equivalent NumPy API where possible.

cKDTree. The scipy.spatial.ckdtree module, which
implements a space-partitioning data structure that organizes
points in k-dimensional space, was rewritten in C++ with tem-
plated classes. Support was added for periodic boundary conditions,
which are often used in simulations of physical processes.

In 2013, the time complexity of the k-nearest-neighbor search
from cKDTree.query was approximately loglinear68, consistent
with its formal description69. Since then, we enhanced cKDTree.
query by reimplementing it in C++, removing memory leaks and
allowing release of the global interpreter lock (GIL) so that multiple
threads may be used70. This generally improved performance on any
given problem while preserving the asymptotic complexity.

In 2015, SciPy added the sparse_distance_matrix rou-
tine for generating approximate sparse distance matrices between
KDTree objects by ignoring all distances that exceed a user-
provided value. This routine is not limited to the conventional L2
(Euclidean) norm but supports any Minkowski p-norm between 1
and infinity. By default, the returned data structure is a dictionary of
keys (DOK)-based sparse matrix, which is very efficient for matrix
construction. This hashing approach to sparse matrix assembly can
be seven times faster than constructing with CSR format71, and the
C++ level sparse matrix construction releases the Python GIL for
increased performance. Once the matrix is constructed, distance
value retrieval has an amortized constant time complexity72, and the
DOK structure can be efficiently converted to a CSR, CSC or COO
matrix to allow for speedy arithmetic operations.

In 2015, the cKDTree dual tree counting algorithm73 was
enhanced to support weights74, which are essential in many scien-
tific applications, for example, computing correlation functions of
galaxies75.

Unified bindings to compiled code. LowLevelCallable. As of SciPy
version 0.19, it is possible for users to wrap low-level functions in
a scipy.LowLevelCallable object that reduces the over-
head of calling compiled C functions, such as those generated using
Numba or Cython, directly from Python. Supported low-level func-
tions include PyCapsule objects, ctypes function pointers and
cffi function pointers. Furthermore, it is possible to generate a
low-level callback function automatically from a Cython module
using scipy.LowLevelCallable.from_cython.

SciPy 0.1 released Creation of SciKits
Development moves

to GitHub

scipy.sparse.csgraph
scipy.optimize.minimize

2001

2005

2007

2008 2010 2013 2015

2017

Transition to NumPy
First Cython code,

scipy.spatial

Move to 6-month
release cycles

Continuous integration
with TravisCI

Cython interface
for BLAS/LAPACK

SciPy 1.0 released

2011 2012

Fig. 1 | Major milestones from SciPy’s initial release in 2001 to the release of SciPy 1.0 in 2017. Note that SciKits and GitHub have been introduced
in the Background section; more information about Cython and SciPy subpackages (for example, scipy.sparse) is available in the ‘Architecture and
implementation choices’ section, BLAS/LAPACK support is detailed in the ‘Key technical improvements’ section, and continuous integration is discussed
in the ‘Test and benchmark suite’ section.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Perspective NaTure MeThodS

Cython bindings for BLAS, LAPACK and special. SciPy has pro-
vided special functions and leveraged basic linear algebra subpro-
grams (BLAS) and linear algebra package (LAPACK)76 routines for
many years. SciPy now additionally includes Cython40 wrappers for
many BLAS and LAPACK routines (added in 2015) and the special
functions provided in the scipy.special subpackage (added in
2016), which are available in scipy.linalg.cython_blas,
scipy.linalg.cython_lapack and scipy.special.
cython_special, respectively. When writing algorithms in
Cython, it is typically more efficient to call directly into the librar-
ies SciPy wraps rather than indirectly, using SciPy’s Python APIs.
These low-level interfaces for Cython can also be used outside of
the SciPy codebase to gain access to the functions in the wrapped
libraries while avoiding the overhead of Python function calls. This
can give performance gains of one or two orders of magnitude for
many use cases.

Developers can also use the low-level Cython interfaces without
linking against the wrapped libraries77. This lets other extensions
avoid the complexity of finding and using the correct libraries.
Avoiding this complexity is especially important when wrapping
libraries written in Fortran. Not only can these low-level wrappers
be used without a Fortran compiler, they can also be used without
having to handle all the different Fortran compiler ABIs and name
mangling schemes.

Most of these low-level Cython wrappers are generated automat-
ically to help with both correctness and ease of maintenance. The
wrappers for BLAS and LAPACK are primarily generated using type
information that is parsed from the BLAS and LAPACK source files
using F2PY19, though a small number of routines use hand-written
type signatures instead. The input and output types of each routine
are saved in a data file that is read at build time and used to generate
the corresponding Cython wrapper files. The wrappers in scipy.
special.cython_special are also generated from a data file
containing type information for the wrapped routines.

Since SciPy can be built with LAPACK 3.4.0 or later, Cython wrap-
pers are only provided for the routines that maintain a consistent

interface across all supported LAPACK versions. The standard
BLAS interface provided by the various existing BLAS libraries is
not currently changing, so changes are not generally needed in the
wrappers provided by SciPy. Changes to the Cython wrappers for
the functions in scipy.special follow corresponding changes
to the interface of that subpackage.

Numerical optimization. The scipy.optimize subpackage
provides functions for the numerical solution of several classes of
root finding and optimization problems. Here we highlight recent
additions through SciPy 1.0.

Linear optimization. A new interior-point optimizer for continu-
ous linear programming problems, linprog with method =
’interior-point’, was released with SciPy 1.0. Implementing
the core algorithm of the commercial solver MOSEK78, it solves all
of the 90+ NETLIB LP benchmark problems79 tested. Unlike some
interior point methods, this homogeneous self-dual formulation pro-
vides certificates of infeasibility or unboundedness as appropriate.

A presolve routine80 solves trivial problems and otherwise per-
forms problem simplifications, such as bound tightening and
removal of fixed variables, and one of several routines for elimi-
nating redundant equality constraints is automatically chosen
to reduce the chance of numerical difficulties caused by singular
matrices. Although the main solver implementation is pure Python,
end-to-end sparse matrix support and heavy use of SciPy’s compiled
linear system solvers—often for the same system with multiple right
hand sides owing to the predictor-corrector approach—provide
speed sufficient for problems with tens of thousands of variables
and constraints.

Nonlinear optimization: local minimization. The minimize func-
tion provides a unified interface for finding local minima of nonlin-
ear optimization problems. Four new methods for unconstrained
optimization were added to minimize in recent versions of SciPy:
dogleg, trust-ncg, trust-exact and trust-krylov.

Table 1 | Optimization methods from minimize

_Nelder-
Mead

Powell COBYLA CG BFGS L-BFGS-G SLSQP TNC Newton-
CG

dogleg trust-
ncg

trust-
exact

trust-
Krylov

Version added 0.6* 0.6* 0.6* 0.6* 0.6* 0.6* 0.9 0.6* 0.6* 0.13 0.13 0.19 1.0

Wrapper ✓ ✓ ✓ ✓ ✓

First derivatives ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Second derivatives ~ ~ ~ ✓ ✓ ✓ ✓ ✓ ✓

Iterative Hessian
factorization

✓ ✓ ✓ ✓

Local convergence L S L S S* S* Q S* Q S*

Global convergence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trust region Neither LS TR LS LS LS LS LS LS TR TR TR TR

Bound constraints ✓ ✓ ✓ ✓

Equality constraints ✓

Inequality constraint ✓ ✓

References 98,99 100 101–103 104,105 105 106,107 108–111 112 105 105,113 105,114 115,116 62,117

Optimization methods from minimize, which solves problems of the form minxf xð Þ
I

, where x 2 Rn

I
 and f : Rn ! R

I
. ‘Version added’ specifies the algorithm’s first appearance in SciPy.

Algorithms with version added “0.6*” were added in version 0.6 or before. ‘Wrapper’ indicates whether the implementation available in SciPy wraps a function written in a compiled language (for example, C or
FORTRAN). ‘First and second derivatives’ indicate whether first or second order derivatives are required. When ‘second derivatives’ is flagged with ‘~’, the algorithm accepts but does not require second-order
derivatives from the user; it computes an approximation internally and uses it to accelerate method convergence. ‘Iterative Hessian factorization’ denotes algorithms that factorize the Hessian in an iterative
way, which does not require explicit matrix factorization or storage of the Hessian. ‘Local convergence’ gives a lower bound on the rate of convergence of the iteration sequence once the iterate is sufficiently
close to the solution: linear (L), superlinear (S) and quadratic (Q). Convergence rates denoted S* indicate that the algorithm has a superlinear rate for the parameters used in SciPy, but can achieve a quadratic
convergence rate with other parameter choices. ‘Global convergence’ is marked for the algorithms with guarantees of convergence to a stationary point (that is, a point x* for which ∇f x*ð Þ ¼ 0

I
); this

is not a guarantee of convergence to a global minimum. ‘Lines-search’ (LS) or ‘trust-region’ (TR) indicates which of the two globalization approaches is used by the algorithm. The table also indicates which

algorithms can deal with constraints on the variables. We distinguish among bound constraints (xl≤x≤xu
I

), equality constraints (ceq xð Þ ¼ 0
I

) and inequality constraints (cineq xð Þ≥0
I

).

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

PerspectiveNaTure MeThodS

All are trust-region methods that build a local model of the objec-
tive function based on first and second derivative information,
approximate the best point within a local ‘trust region’ and iterate
until a local minimum of the original objective function is reached,
but each has unique characteristics that make it appropriate for
certain types of problems. For instance, trust-exact achieves
fast convergence by solving the trust-region subproblem almost
exactly, but it requires the second derivative Hessian matrix to be
stored and factored every iteration, which may preclude the solu-
tion of large problems (≥1,000 variables). In contrast, trust-ncg
and trust-krylov are well suited to large-scale optimization
problems because they do not need to store and factor the Hessian
explicitly, instead using second derivative information in a faster,
approximate way. We compare the characteristics of all minimize
methods in detail in Table 1, which illustrates the level of complete-
ness that SciPy aims for when covering a numerical method or topic.

Nonlinear optimization: global minimization. As minimize may
return any local minimum, some problems require the use of a
global optimization routine. The new scipy.optimize.dif-
ferentialevolution function81,82 is a stochastic global opti-
mizer that works by evolving a population of candidate solutions.
In each iteration, trial candidates are generated by combination
of candidates from the existing population. If the trial candidates
represent an improvement, then the population is updated. Most
recently, the SciPy benchmark suite gained a comprehensive set of
196 global optimization problems for tracking the performance of
existing solvers over time and for evaluating whether the perfor-
mance of new solvers merits their inclusion in the package.

Statistical distributions. The scipy.stats subpackage con-
tains more than 100 probability distributions: 96 continuous and 13
discrete univariate distributions, and 10 multivariate distributions.
The implementation relies on a consistent framework that provides
methods to sample random variates, to evaluate the cumulative
distribution function (CDF) and the probability density function
(PDF), and to fit parameters for every distribution. Generally, the
methods rely on specific implementations for each distribution,
such as a closed-form expression of the CDF or a sampling algo-
rithm, if available. Otherwise, default methods are used based on
generic code, for example, numerical integration of the PDF to
obtain the CDF. Key recent distributions added to scipy.stats
include the histogram-based distribution in scipy.stats.
rv_histogram and the multinomial distribution in scipy.

stats.multinomial (used, for example, in natural language
processing83).

Polynomial interpolators. Historically, SciPy relied heavily on the
venerable FITPACK Fortran library by P. Dierckx53,84 for univariate
interpolation and approximation of data, but the original mono-
lithic design and API for interaction between SciPy and FITPACK
was limiting for both users and developers.

Implementing a new, modular design of polynomial interpola-
tors was spread over several releases. The goals of this effort were
to have a set of basic objects representing piecewise polynomials, to
implement a collection of algorithms for constructing various inter-
polators, and to provide users with building blocks for constructing
additional interpolators.

At the lowest level of the new design are classes that represent
univariate piecewise polynomials: PPoly (SciPy 0.13)85, BPoly
(SciPy 0.13) and BSpline (SciPy 0.19)86, which allow efficient
vectorized evaluations, differentiation, integration and root-find-
ing. PPoly represents piecewise polynomials in the power basis
in terms of breakpoints and coefficients at each interval. BPoly is
similar and represents piecewise polynomials in the Bernstein basis
(which is suitable, for example, for constructing Bézier curves).
BSpline represents spline curves, that is, linear combinations of
B-spline basis elements87.

In the next layer, these polynomial classes are used to construct
several common ways of interpolating data: CubicSpline (SciPy
0.18)88 constructs a twice differentiable piecewise cubic function,
Akima1DInterpolator and PCHIPInterpolator imple-
ment two classic prescriptions for constructing a C1 continuous
monotone shape-preserving interpolator89,90.

Test and benchmark suite. Test suite. Test-driven development has
been described as a way to manage fear and uncertainty when mak-
ing code changes91. For each component of SciPy, we write multiple
small executable tests that verify its intended behavior. The collec-
tion of these, known as a ‘test suite’, increases confidence in the cor-
rectness and accuracy of the library, and allows us to make code
modifications known not to alter desired behavior. According to
the practice of continuous integration92, all proposed contributions
to SciPy are temporarily integrated with the master branch of the
library before the test suite is run, and all tests must be passed before
the contribution is permanently merged. Continuously monitoring
the number of lines of code in SciPy covered by unit tests is one way
we maintain some certainty that changes and new features are cor-
rectly implemented.

The SciPy test suite is orchestrated by a continuous integration
matrix that includes POSIX and Windows (32/64-bit) platforms
managed by Travis CI and AppVeyor, respectively. Our tests cover
Python versions 2.7, 3.4, 3.5, 3.6, and include code linting with
pyflakes and pycodestyle. There are more than 13,000 unit
tests in the test suite, which is written for usage with the pytest
(https://docs.pytest.org/en/latest) framework. In Fig. 2, we show
historical test coverage data generated using a Docker-based
approach (https://github.com/tylerjereddy/scipy-cov-track). With
the exception of the removal of ∼61,000 lines of compiled code for
SciPy v0.14, the volume of both compiled (C, C++ and Fortran)
and Python code has increased between releases, as have the num-
ber of lines covered by unit tests. Test coverage at the SciPy 1.0
release point was at 87% for Python code according to pytest-
cov (https://pypi.org/project/pytest-cov/). Coverage of compiled
(C, C++ and Fortran) code was only 45% according to gcov
(https://gcc.gnu.org/onlinedocs/gcc/Gcov.html), but the compiled
codebase is much more robust than this figure would suggest as
the figure does not correct for the inclusion of reputable vendor
code, the original library of which is well-tested; generated code, for
which full coverage is impractical; and deprecated code, which does

v0
.1

2.
1

v0
.1

3.
3

v0
.1

4.
1

v0
.1

5.
1

v0
.1

6.
1

v0
.1

7.
1

v0
.1

8.
1

v0
.1

9.
1

v1
.0

.0

200,000

Li
ne

s
of

 c
od

e

400,000

600,000

Compiled (covered) Compiled (uncovered) Python (covered) Python (uncovered)

Fig. 2 | Python and compiled code volume in SciPy over time.

Nature Methods | www.nature.com/naturemethods

https://docs.pytest.org/en/latest
https://github.com/tylerjereddy/scipy-cov-track
https://pypi.org/project/pytest-cov/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://www.nature.com/naturemethods

Perspective NaTure MeThodS

not require unit tests. Documentation for the code is automatically
built and published by the CircleCI service to facilitate evaluation of
documentation changes/integrity.

Benchmark suite. In addition to ensuring that unit tests are pass-
ing, it is important to confirm that the performance of the SciPy
codebase improves over time. Since February 2015, the perfor-
mance of SciPy has been monitored with Airspeed Velocity (asv
https://github.com/airspeed-velocity/asv). SciPy’s run.py script
conveniently wraps asv features such that benchmark results over
time can be generated with a single console command. For exam-
ple, in Fig. 3 we illustrate the improvement of scipy.spatial.
cKDTree.query over roughly nine years of project history. The
tree used in the benchmark was generated without application of
toroidal topology (boxsize = None), and tests were performed
by Airspeed Velocity 0.4 using Python 2.7, NumPy 1.8.2 and Cython
versions 0.27.3, 0.21.1 and 0.18 (for improved backward compat-
ibility). Substantial performance improvements were realized when
cKDTree was fully Cythonized and again when it was rewritten in
C++.

Project organization and community
Governance. SciPy adopted an official governance document
(https://docs.scipy.org/doc/scipy/reference/dev/governance/gover-
nance.html) on August 3, 2017. A steering council, currently com-
posed of 18 members, oversees daily development of the project by
contributing code and reviewing contributions from the commu-
nity. Council members have commit rights to the project reposi-
tory, but they are expected to merge changes only when there are no
substantive community objections. The chair of the steering coun-
cil, Ralf Gommers, is responsible for initiating biannual technical
reviews of project direction and summarizing any private council
activities to the broader community. The project’s benevolent dicta-
tor for life, Pauli Virtanen, has overruling authority on any matter,
but is expected to act in good faith and only exercise this authority
when the steering council cannot reach agreement.

SciPy’s official code of conduct was approved on October 24,
2017. In summary, there are five specific guidelines: be open to
everyone participating in our community; be empathetic and
patient in resolving conflicts; be collaborative, as we depend on
each other to build the library; be inquisitive, as early identifica-
tion of issues can prevent serious consequences; and be careful with
wording. The code of conduct specifies how breaches can be
reported to a code of conduct committee and outlines procedures

for the committee’s response. Our diversity statement “welcomes
and encourages participation by everyone.”

Maintainers and contributors. The SciPy project has ~100 unique
contributors for every 6-month release cycle. Anyone with the inter-
est and skills can become a contributor; the SciPy developer guide
(http://scipy.github.io/devdocs/dev/core-dev/index.html) provides
guidance on how to do that. In addition, the project currently has
15 active (volunteer) maintainers: people who review the contribu-
tions of others and do everything else needed to ensure that the soft-
ware and the project move forward. Maintainers are critical to the
health of the project93; their skills and efforts largely determine how
fast the project progresses, and they enable input from the much
larger group of contributors. Anyone can become a maintainer, too,
as they are selected on a rolling basis from contributors with a sub-
stantial history of high-quality contributions.

Funding. The development cost of SciPy is estimated in excess of
10 million dollars by Open Hub (https://www.openhub.net/p/scipy/
estimated_cost). Yet the project is largely unfunded, having been
developed predominantly by graduate students, faculty and mem-
bers of industry in their free time. Small amounts of funding have
been applied with success: some meetings were sponsored by uni-
versities and industry, Google’s Summer of Code program supported
infrastructure and algorithm work, and teaching grant funds were
used early on to develop documentation. However, funding from
national agencies, foundations and industry has not been commen-
surate with the enormous stack of important software that relies on
SciPy. More diverse spending to support planning, development,
management and infrastructure would help SciPy remain a healthy
underpinning of international scientific and industrial endeavors.

Downstream projects. The scientific Python ecosystem includes
many examples of domain-specific software libraries building on
top of SciPy features and then returning to the base SciPy library to
suggest and even implement improvements. For example, there are
common contributors to the SciPy and Astropy core libraries94, and
what works well for one of the codebases, infrastructures or com-
munities is often transferred in some form to the other. At the code-
base level, the binned_statistic functionality is one such
cross-project contribution: it was initially developed in an Astropy-
affiliated package and then placed in SciPy afterward. In this per-
spective, SciPy serves as a catalyst for cross-fertilization throughout
the Python scientific computing community.

cKDTree introduced
cKDTree fully cythonized

cKDTree rewritten in C++

SciPy 1.0 released

E
xe

cu
tio

n
tim

e
(s

)
1.0

0.1

0.01

0.001

Commit date

2009 2010 2011 2012 2013 2014 2018

m = 16
m = 8
m = 3

2015 2016 2017

Fig. 3 | Results of the scipy.spatial.cKDTree.query benchmark from the introduction of cKDTree to the release of SciPy 1.0. The benchmark generates a
k-d tree from uniformly distributed points in an m-dimensional unit hypercube, then finds the nearest (Euclidean) neighbor in the tree for each of 1,000
query points. Each marker in the figure indicates the execution time of the benchmark for a commit in the master branch of SciPy.

Nature Methods | www.nature.com/naturemethods

https://github.com/airspeed-velocity/asv
https://docs.scipy.org/doc/scipy/reference/dev/governance/governance.html
https://docs.scipy.org/doc/scipy/reference/dev/governance/governance.html
http://scipy.github.io/devdocs/dev/core-dev/index.html
https://www.openhub.net/p/scipy/estimated_cost
https://www.openhub.net/p/scipy/estimated_cost
http://www.nature.com/naturemethods

PerspectiveNaTure MeThodS

Discussion
SciPy has a strong developer community and a massive user base.
GitHub traffic metrics report roughly 20,000 unique visitors to the
source website between 14 May 2018 and 27 May 2018 (near the
time of writing), with 721 unique copies (‘clones’) of the codebase
over that time period. The developer community at that time con-
sisted of 610 unique contributors of source code, with more than
19,000 commits accepted into the codebase (GitHub page data).

From the user side, there were 13,096,468 downloads of SciPy
from the Python Packaging Index (PyPI)95 and 5,776,017 via the
default channel of the conda (https://github.com/ContinuumIO/
anaconda-package-data) package manager during the year 2017.
These numbers establish a lower bound on the total number of
downloads by users given that PyPI and conda are only two of sev-
eral popular methods for installing SciPy. The SciPy website (http://
www.scipy.org/), which has been the default citation in the absence
of a peer-reviewed paper, has been cited over 3,000 times (https://
scholar.google.com/scholar?q=SciPy). Some of the most prominent
uses of or demonstrations of credibility for SciPy include the LIGO-
Virgo scientific collaboration that lead to the observation of gravi-
tational waves96, the fact that SciPy is shipped directly with macOS
and in the Intel distribution for Python97, and that SciPy is used by
47% of all machine learning projects on GitHub (https://github.
blog/2019-01-24-the-state-of-the-octoverse-machine-learning/).

Nevertheless, SciPy continually strives to improve. The SciPy
Roadmap (https://docs.scipy.org/doc/scipy-1.0.0/reference/road-
map.html, https://scipy.github.io/devdocs/roadmap.html), sum-
marized in Table 2, is a continually updated document maintained
by the community that describes some of the major directions for
improvement for the project, as well as specific limitations and
matters that require assistance moving forward. In addition to the
items on the roadmap, we are still working to increase the num-
ber of SciPy usage tutorials beyond our current 15 section offering.

Also, the low-level Cython code in our library (which interacts with
C-level code and exposes it for Python usage) could use some mea-
sure of modernization, including migration to typed memoryviews
to handle NumPy arrays.

A problem faced by many open-source projects is attracting and
retaining developers. Although it is normal for some individuals to
contribute to a project for a while and then move on, too much turn-
over can result in the loss of institutional memory, leading to mistakes
of the past being repeated, APIs of new code becoming inconsistent
with the old code and a drifting project scope. We are fortunate that
the SciPy project continues to attract enthusiastic and competent new
developers while maintaining the involvement of a small but dedi-
cated old guard. There are contributors who were present in the early
years of the project who still contribute to discussions of bug reports
and reviews of new code contributions. Our benevolent dictator for
life has been with the project for more than 10 years and is still actively
contributing code, and the head of our steering council, who also acts
as a general manager, is approaching his eleventh anniversary. An
additional half dozen or so active developers have been contributing
steadily for five or more years. The combination of a committed old
guard and a host of new contributors ensures that SciPy will continue
to grow while maintaining a high level of quality.

A final important challenge to address is the accommodation of
GPU and distributed computing without disrupting our conven-
tional and heavily used algorithm/API infrastructure. Although the
exact approach we will adopt across the entire library to leverage
these emerging technologies remains unclear, and was not a priority
at the 1.0 release point, we now have a concrete implementation of
a subpackage that allows for the experimental use of multiple back-
ends, such as GPU-tractable data structures, in the new scipy.
fft. This will be described in detail in a future report.

Reporting Summary. Further information on research design is
available in the Nature Research Reporting Summary linked to this
article.

Data availability
Raw data for Fig. 2 are available at https://github.com/tylerjereddy/
scipy-cov-track, and raw data for Fig. 3 are available at https://
github.com/scipy/scipy-articles/tree/master/scipy-1.0/supporting_
info/asv_bench/cKDTree.

Code availability
All SciPy library source code is available in the SciPy GitHub repos-
itory, https://github.com/scipy/scipy.

Received: 28 July 2019; Accepted: 14 November 2019;
Published: xx xx xxxx

References
	1.	 Oliphant, T.E. Guide to NumPy 1st edn (Trelgol Publishing USA, 2006).
	2.	 van derWalt, S., Colbert, S. C. & Varoquaux, G.The NumPy array: a

structure for efficient numerical computation. Comput. Sci. Eng. 13,
22–30 (2011).

	3.	 Pedregosa, F.et al.Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011).

	4.	 van derWalt, S.et al.scikit-image: image processing in Python. Peer J. 2,
e453 (2014).

	5.	 Nitz, A. et al. gwastro/pycbc: PyCBC v1.13.2 release, https://doi.
org/10.5281/zenodo.1596771 (27 November 2018).

	6.	 Vallisneri, M., Kanner, J., Williams, R., Weinstein, A. & Stephens, B.The
LIGO Open Science Center. J. Phys. Conf. Ser. 610, 012021 (2015).

	7.	 Abbott, B. P.et al.GW150914: First results from the search for binary black
hole coalescence with Advanced LIGO. Phys. Rev. D. 93, 122003 (2016).

	8.	 Abbott, B. P.et al.GW170817: observation of gravitational waves from a
binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

	9.	 The Event Horizon Telescope Collaboration.et al.First M87 event horizon
telescope results. III. Data processing and calibration. Astrophys. J. Lett. 875,
L3 (2019).

Table 2 | Summary of SciPy Roadmap items following 1.0
release

SciPy subpackage Summary of change

Optimize A few more high-quality global optimizers

Fftpack Reduce overlap with NumPy equivalent

Linalg Reduce overlap with NumPy equivalent

interpolate New spline fitting and arithmetic routines

interpolate New transparent tensor-product splines

interpolate New non-uniform rational B-splines

interpolate Mesh refinement and coarsening of B-splines
and tensor products

Signal Migrate spline functionality to
interpolate

Signal Second order sections update to match
capabilities in other routines

Linalg Support a more recent version of LAPACK

Ndimage Clarify usage of the ‘data point’ coordinate
model, and add additional wrapping modes

Sparse Incorporate sparse arrays from Sparse
package118

sparse.linalg Add PROPACK wrappers for faster SVD

Spatial Add support for (quaternion) rotation
matrices

Special Precision improvements for hypergeometric,
parabolic cylinder and spheroidal wave
functions

Nature Methods | www.nature.com/naturemethods

https://github.com/ContinuumIO/anaconda-package-data
https://github.com/ContinuumIO/anaconda-package-data
http://www.scipy.org/
http://www.scipy.org/
https://scholar.google.com/scholar?q=SciPy
https://scholar.google.com/scholar?q=SciPy
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://docs.scipy.org/doc/scipy-1.0.0/reference/roadmap.html
https://docs.scipy.org/doc/scipy-1.0.0/reference/roadmap.html
https://scipy.github.io/devdocs/roadmap.html
https://github.com/tylerjereddy/scipy-cov-track
https://github.com/tylerjereddy/scipy-cov-track
https://github.com/scipy/scipy-articles/tree/master/scipy-1.0/supporting_info/asv_bench/cKDTree
https://github.com/scipy/scipy-articles/tree/master/scipy-1.0/supporting_info/asv_bench/cKDTree
https://github.com/scipy/scipy-articles/tree/master/scipy-1.0/supporting_info/asv_bench/cKDTree
https://github.com/scipy/scipy
https://doi.org/10.5281/zenodo.1596771
https://doi.org/10.5281/zenodo.1596771
http://www.nature.com/naturemethods

Perspective NaTure MeThodS

	10.	 Blanton, K. At Mathworks, support + fun = success: CEO Jack Little
believes in power of his workers–and their ideas. The Boston Globe, J5
(20 April 1997).

	11.	 Howell, D. Jack Dangermond’s digital mapping lays it all out. Investor’s
Business Daily (14 August 2009).

	12.	 Port, O. Simple solutions. BusinessWeek, 24–24 (3 October 2005).
	13.	 van Rossum, G. Python/C API Reference Manual, http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.211.6702&rep=rep1&type=pdf (2001).
	14.	 Hugunin, J. The matrix object proposal (very long), https://mail.python.org/

pipermail/matrix-sig/1995-August/000002.html (18 August 1995).
	15.	 Hugunin, J. Extending Python for numerical computation, http://hugunin.

net/papers/hugunin95numpy.html (1995).
	16.	 Oliphant, T. E. Moving forward from the last decade of SciPy. Presentation

slides, https://conference.scipy.org/scipy2010/slides/travis_oliphant_keynote.
pdf (1 July 2010).

	17.	 Oliphant, T. E. Some Python modules. Web Archive, https://web.archive.org/
web/19990125091242/http://oliphant.netpedia.net:80/ (25 January 1999).

	18.	 Oliphant, T. E. Modules to enhance Numerical Python. Web Archive,
https://web.archive.org/web/20001206213500/http://oliphant.netpedia.
net:80/ (6 December 2000).

	19.	 Peterson, P.F2PY: a tool for connecting Fortran and Python programs.
Int. J. Comput. Sci. Eng. 4, 296–305 (2009).

	20.	 Strangman, G. Python modules. Web Archive, https://web.archive.org/
web/20001022231108/http://www.nmr.mgh.harvard.edu/Neural_Systems_
Group/gary/python.html (2000).

	21.	 SciPy Developers. SciPy.org. Web Archive, https://web.archive.org/
web/20010309040805/http://scipy.org:80/ (2001).

	22.	 Vaught, T. N. SciPy Developer mailing list now online, https://mail.python.
org/pipermail/scipy-dev/2001-June/000000.html (2001).

	23.	 Jones, E. ANN: SciPy 0.10–scientific computing with Python, https://mail.
python.org/pipermail/python-list/2001-August/106419.html (2001).

	24.	 Vaught, T.N. Reference documentation and Tutorial documentation are now
available for download as tarballs. Web Archivehttps://web.archive.org/
web/20021013204556/http://www.scipy.org:80/scipy/site_content/site_news/
docs_released1 (2002).

	25.	 Vaught, T. N. [ANN] SciPy ‘02 - Python for Scientific Computing
Workshop, https://mail.python.org/pipermail/numpy-discussion/2002-
June/001511.html (2002).

	26.	 Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J. & Oliphant, T. E. An open
source project: Numerical Python, https://doi.org/10.5281/zenodo.3599566
(2001).

	27.	 Greenfield, P. How Python slithered Into astronomy. Presentation, https://
conference.scipy.org/scipy2011/slides/greenfield_keynote_astronomy.pdf
(2011).

	28.	 Greenfield, P., Miller, J.T., Hsu, J.T. & White, R.L. numarray: a new scientific
array package for Python. PyCon DC (2003).

	29.	 NumPy Developers. v1.0, https://github.com/numpy/numpy/releases/tag/
v1.0 (25 October 2006).

	30.	 Millman, K. J. & Pérez, F. Developing open-source scientific practice. in
Implementing Reproducible Research (CRC Press) 149–183 (2014).

	31.	 Brandl, G. & the Sphinx team. Sphinx - Python Documentation Generator,
http://www.sphinx-doc.org/en/master/ (2007).

	32.	 Virtanen, P. et al. pydocweb: a tool for collaboratively documenting Python
modules via the web. Web Archive, https://code.google.com/archive/p/
pydocweb/ (2008).

	33.	 Harrington, J. The SciPy documentation project. In Proceedings of the 7th
Python in Science Conference (eds G. Varoquaux, G., Vaught, T. & Millman,
K. J.) 33–35 (2008).

	34.	 van der Walt, S. The SciPy documentation project (technical overview). In
Proceedings of the 7th Python in Science Conference (eds G. Varoquaux, G.,
Vaught, T. & Millman, K. J.) 27–28 (2008).

	35.	 Harrington, J. & Goldsmith, D. Progress report: NumPy and SciPy
documentation in 2009. In Proceedings of the 8th Python in Science Conference
(eds Varoquaux, G., van der Walt, S. & Millman, K. J.) 84–87 (2009).

	36.	 Pérez, F., Langtangen, H. P. & LeVeque, R. Python for scientific
computing. In SIAM Conference on Computational Science and Engineering,
42 (5) (2009).

	37.	 Dubois, P. F.Python: batteries included. Comput. Sci. Eng.9, 7–9 (2007).
	38.	 Millman, K. J. & Aivazis, M.Python for scientists and engineers. Comput.

Sci. Eng. 13, 9–12 (2011).
	39.	 Pérez, F., Granger, B. E. & Hunter, J. D.Python: an ecosystem for scientific

computing. Comput. Sci. Eng. 13, 13–21 (2011).
	40.	 Behnel, S.et al.Cython: the best of both worlds. Comput. Sci. Eng.13,

31–39 (2011).
	41.	 Ramachandran, P. & Varoquaux, G.Mayavi: 3D visualization of scientific

data. Comput. Sci. Eng. 13, 40–51 (2011).
	42.	 Muller, E.et al. Python in neuroscience. Front. Neuroinform. 9, 11 (2015).
	43.	 GitHub. Network dependents - scipy/scipy, https://github.com/scipy/scipy/

network/dependents (2019).

	44.	 Boisvert, R. F., Howe, S. E. & Kahaner, D. K.The guide to available
mathematical software problem classification system. Commun. Stat. Simul.
Comput 20, 811–842 (1991).

	45.	 Seabold, S. & Perktold, J. Statsmodels: econometric and statistical
modeling with Python. In Proceedings of the 9th Python in Science
Conference 57–61 (2010).

	46.	 Salvatier, J., Wiecki, T. V. & Fonnesbeck, C.Probabilistic programming in
Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

	47.	 Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the
MCMC hammer. Publ. Astron. Soc. Pac.125, 306–312 (2013).

	48.	 Meurer, A.et al.SymPy: symbolic computing in Python. PeerJ Comput. Sci.
3, e103 (2017).

	49.	 Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python
in Science Conference. (eds G. Varoquaux, G., Vaught, T. & Millman, K. J.)
11–15 (2008).

	50.	 Koelbel, C.H. & Zosel, M.E. The High Performance FORTRAN Handbook
(MIT Press, 1993).

	51.	 Piessens, R., de Doncker-Kapenga, E., Uberhuber, C.W. & Kahaner, D.K.
QUADPACK: A Subroutine Package for Automatic Integration
(Springer, 1983).

	52.	 Hindmarsh, A.C. ODEPACK, a systematized collection of ODE solvers.
Scientific Computing 55–64 (1983).

	53.	 Dierckx, P. Curve and Surface Fitting with Splines (Oxford Univ. Press, 1993).
	54.	 Boggs, P.T., Byrd, R.H., Rogers, J.E. & Schnabel, R.B. User’s Reference Guide

for ODRPACK Version 2.01: Software for Weight Orthogonal Distance
Regression (U.S. Department of Commerce, National Institute of Standards
and Technology, 1992).

	55.	 Moré. Jorge J., Garbow, B. S. & Hillstrom, K. E. User guide for
MINPACK-1. Report ANL-80–74 (Argonne National Laboratory, 1980).

	56.	 Swarztrauber, P. N. Vectorizing the FFTs. In Parallel Computations
(ed. Rodrigue, G.) 51–83 (Academic, 1982).

	57.	 Swarztrauber, P. N.FFT algorithms for vector computers. Parallel Comput. 1,
45–63 (1984).

	58.	 Lehoucq, R.B., Sorensen, D.C. & Yang, C. ARPACK users’ guide: solution of
large scale eigenvalue problems with implicitly restarted Arnoldi methods.
(Rice University, 1997).

	59.	 Amos, D. E.Algorithm 644: A portable package for Bessel functions of a
complex argument and nonnegative order. ACM Trans. Math. Softw. 12,
265–273 (1986).

	60.	 Brown, B., Lovato, J. & Russell, K. CDFLIB, https://people.sc.fsu.
edu/~jburkardt/f_src/cdflib/cdflib.html (accessed 6 July 2018).

	61.	 Kernighan, B. W. & Ritchie, D. M. The C Programming Language 2nd edn
(Prentice Hall Professional Technical Reference, 1988).

	62.	 Lenders, F., Kirches, C. & Potschka, A.trlib: a vector-free implementation of
the GLTR method for iterative solution of the trust region problem. Optim.
Methods Softw. 33, 420–449 (2018).

	63.	 Li, X.S. et al. SuperLU Users’ Guide. Report LBNL-44289 (Lawrence
Berkeley National Laboratory, 1999).

	64.	 Li, X. S.An overview of SuperLU: algorithms, implementation, and user
interface. ACM Trans. Math. Softw. 31, 302–325 (2005).

	65.	 Barber, C. B., Dobkin, D. P. & Huhdanpaa, H.The Quickhull algorithm for
convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996).

	66.	 Lam, S. K., Pitrou, A. & Seibert, S. Numba: A LLVM-based Python JIT
compiler. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC 7:1–7:6 (ACM, 2015).

	67.	 Bolz, C. F., Cuni, A., Fijalkowski, M. & Rigo, A. Tracing the meta-level:
PyPy’s tracing JIT compiler. In Proceedings of the 4th Workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems 18–25 (ACM, 2009).

	68.	 VanderPlas, J. Benchmarking nearest neighbor searches in Python, https://
jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-
searches-in-python/ (19 April 2013).

	69.	 Maneewongvatana, S. & Mount, D. M. Analysis of approximate nearest
neighbor searching with clustered point sets. Preprint at https://arxiv.org/
pdf/cs/9901013.pdf (1999).

	70.	 Molden, S. ENH: Enhancements to spatial.cKDTree, https://github.com/
scipy/scipy/pull/4374/ (7 January 2015).

	71.	 Aspnas, M., Signell, A. & Westerholm, J. Efficient assembly of sparse
matrices using hashing. In Applied Parallel Computing. State of the Art in
Scientific Computing (eds Kagstrom, B. et al.) 900–907 (Springer, 2007).

	72.	 Cormen, T. H., Stein, C., Rivest, R. L. & Leiserson, C. E. Introduction to
Algorithms 2nd edn (McGraw-Hill Higher Education, 2001).

	73.	 Moore A. W. et al. Fast algorithms and efficient statistics: N-point
correlation functions. In Mining the Sky. ESO Astrophysics Symposia
(European Southern Observatory) (eds Banday, A. J., Zaroubi, S. &
Bartelmann, M.) 71–82 (Springer, 2001).

	74.	 Feng, Y. ENH: Faster count_neighour in cKDTree / + weighted input data
https://github.com/scipy/scipy/pull/5647 (2015).

Nature Methods | www.nature.com/naturemethods

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.6702&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.6702&rep=rep1&type=pdf
https://mail.python.org/pipermail/matrix-sig/1995-August/000002.html
https://mail.python.org/pipermail/matrix-sig/1995-August/000002.html
http://hugunin.net/papers/hugunin95numpy.html
http://hugunin.net/papers/hugunin95numpy.html
https://conference.scipy.org/scipy2010/slides/travis_oliphant_keynote.pdf
https://conference.scipy.org/scipy2010/slides/travis_oliphant_keynote.pdf
https://web.archive.org/web/19990125091242/http://oliphant.netpedia.net:80/
https://web.archive.org/web/19990125091242/http://oliphant.netpedia.net:80/
https://web.archive.org/web/20001206213500/http://oliphant.netpedia.net:80/
https://web.archive.org/web/20001206213500/http://oliphant.netpedia.net:80/
https://web.archive.org/web/20001022231108/http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python.html
https://web.archive.org/web/20001022231108/http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python.html
https://web.archive.org/web/20001022231108/http://www.nmr.mgh.harvard.edu/Neural_Systems_Group/gary/python.html
https://web.archive.org/web/20010309040805/http://scipy.org:80/
https://web.archive.org/web/20010309040805/http://scipy.org:80/
https://mail.python.org/pipermail/scipy-dev/2001-June/000000.html
https://mail.python.org/pipermail/scipy-dev/2001-June/000000.html
https://mail.python.org/pipermail/python-list/2001-August/106419.html
https://mail.python.org/pipermail/python-list/2001-August/106419.html
https://web.archive.org/web/20021013204556/http://www.scipy.org:80/scipy/site_content/site_news/docs_released1
https://web.archive.org/web/20021013204556/http://www.scipy.org:80/scipy/site_content/site_news/docs_released1
https://web.archive.org/web/20021013204556/http://www.scipy.org:80/scipy/site_content/site_news/docs_released1
https://mail.python.org/pipermail/numpy-discussion/2002-June/001511.html
https://mail.python.org/pipermail/numpy-discussion/2002-June/001511.html
https://doi.org/10.5281/zenodo.3599566
https://conference.scipy.org/scipy2011/slides/greenfield_keynote_astronomy.pdf
https://conference.scipy.org/scipy2011/slides/greenfield_keynote_astronomy.pdf
https://github.com/numpy/numpy/releases/tag/v1.0
https://github.com/numpy/numpy/releases/tag/v1.0
http://www.sphinx-doc.org/en/master/
https://code.google.com/archive/p/pydocweb/
https://code.google.com/archive/p/pydocweb/
https://github.com/scipy/scipy/network/dependents
https://github.com/scipy/scipy/network/dependents
https://people.sc.fsu.edu/~jburkardt/f_src/cdflib/cdflib.html
https://people.sc.fsu.edu/~jburkardt/f_src/cdflib/cdflib.html
https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/
https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/
https://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/
https://arxiv.org/pdf/cs/9901013.pdf
https://arxiv.org/pdf/cs/9901013.pdf
https://github.com/scipy/scipy/pull/4374/
https://github.com/scipy/scipy/pull/4374/
https://github.com/scipy/scipy/pull/5647
http://www.nature.com/naturemethods

PerspectiveNaTure MeThodS

	75.	 Martin, A. M., Giovanelli, R., Haynes, M. P. & Guzzo, L. The clustering
characteristics of HI-selected galaxies from the 40% ALFALFA survey.
Astrophys. J.750, 38 (2012).

	76.	 Anderson, E. et al. LAPACK Users’ Guide 3rd edn (Society for Industrial
and Applied Mathematics, 1999).

	77.	 Henriksen, I. Circumventing the linker: using SciPy’s BLAS and LAPACK
within Cython. In Proceedings of the 14th Python in Science Conference
(SciPy 2015) (eds Huff, K. & Bergstra, J.) 49–52 (2015).

	78.	 Andersen, E. D. & Andersen, K. D. (2000) The Mosek interior point
optimizer for linear programming: an implementation of the homogeneous
algorithm. In High Performance Optimization 197–232 (Springer, 2000).

	79.	 The NETLIB LP test problem set, http://www.numerical.rl.ac.uk/cute/netlib.
html (2019).

	80.	 Andersen, E. D. & Andersen, K. D.Presolving in linear programming.
Math. Program. 71, 221–245 (1995).

	81.	 Wormington, M., Panaccione, C., Matney Kevin, M. & Bowen, D.
K.Characterization of structures from X-ray scattering data using genetic
algorithms. Philos. Trans. R. Soc. Lond. A 357, 2827–2848 (1999).

	82.	 Storn, R. & Price, K.Differential evolution — a simple and efficient
heuristic for global optimization over continuous spaces. J. Glob. Optim. 11,
341–359 (1997).

	83.	 Griffiths, T. L. & Steyvers, M.Finding scientific topics. Proc. Natl Acad. Sci.
USA 101(Suppl. 1), 5228–5235 (2004).

	84.	 Dierckx, P. Curve and Surface Fitting with Splines (Oxford Univ. Press, 1993).
	85.	 Virtanen, P. ENH: interpolate: rewrite ppform evaluation in Cython, https://

github.com/scipy/scipy/pull/2885 (2013).
	86.	 Burovski, E. add b-splines, https://github.com/scipy/scipy/pull/3174

(27 December 2013).
	87.	 de Boor, C. A Practical Guide to Splines (Springer, 1978).
	88.	 Mayorov, N. ENH: CubicSpline interpolator, https://github.com/scipy/scipy/

pull/5653 (2 January 2016).
	89.	 Fritsch, F. N. & Carlson, R. E.Monotone piecewise cubic interpolation.

SIAM J. Numer. Anal. 17, 238–246 (1980).
	90.	 Akima, H.A new method of interpolation and smooth curve fitting based

on local procedures. J. Assoc. Comput. Mach. 17, 589–602 (1970).
	91.	 Beck, K. Test-driven Development: By Example (Addison-Wesley, 2003).
	92.	 Silver, A.Collaborative software development made easy. Nature 550,

143–144 (2017).
	93.	 Eghbal, N. Roads and Bridges: The Unseen Labor Behind Our Digital

Infrastructure (Ford Foundation, 2016).
	94.	 The Astropy Collaboration.et al.The Astropy Project: building an open-

science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
	95.	 Lev, O., Dufresne, J., Kasim, R., Skinn, B. & Wilk, J. pypinfo: view PyPI

download statistics with ease, https://github.com/ofek/pypinfo (2018).
	96.	 Abbott, B. P.et al.Observation of gravitational waves from a binary black

hole merger. Phys. Rev. Lett. 116, 061102 (2016).
	97.	 David Liu. The Intel distribution for Python, https://software.intel.com/

en-us/articles/intel-optimized-packages-for-the-intel-distribution-for-python
(25 August 2017, updated 30 October 2017, accessed 25 July 2018).

	98.	 Nelder, J. A. & Mead, R.A simplex method for function minimization.
Comput. J. 7, 308–313 (1965).

	99.	 Wright, M. H. Direct search methods: once scorned, now respectable.
Pitman Research Notes in Mathematics Series 191–208 (1996).

	100.	 Powell, M. J. D.An efficient method for finding the minimum of a
function of several variables without calculating derivatives. Comput. J. 7,
155–162 (1964).

	101.	 Powell, M. J. D. A direct search optimization method that models the
objective and constraint functions by linear interpolation. In Advances in
Optimization and Numerical Analysis (eds Gomez, S. & Hennart, J. P.)
51–67 (Springer, 1994).

	102.	 Powell, M. J. D.Direct search algorithms for optimization calculations.
Acta Numerica 7, 287–336 (1998).

	103.	 Powell, M. J. D.A view of algorithms for optimization without derivatives.
Math. Today Bull. Inst. Math. Appl. 43, 170–174 (2007).

	104.	 Polak, E. & Ribiere, G.Note sur la convergence de methodes de directions
conjuguees. Rev. française d’informatique et. de. Rech. op.érationnelle 3,
35–43 (1969).

	105.	 Nocedal, J. & Wright, S. Numerical Optimization 2nd edn (Springer Science
& Business Media, 2006).

	106.	 Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C.A limited memory algorithm for
bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995).

	107.	 Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J.Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Trans.
Math. Softw. 23, 550–560 (1997).

	108.	 Schittkowski, K.On the convergence of a sequential quadratic programming
method with an augmented Lagrangian line search function. Mathematische
Operationsforschung und Statistik. Ser. Optim. 14, 197–216 (1983).

	109.	 Schittkowski, K.The nonlinear programming method of Wilson, Han, and
Powell with an augmented Lagrangian type line search function. Part 2: an

efficient implementation with linear least squares subproblems. Numer.
Math. 38, 115–127 (1982).

	110.	 Schittkowski, K.The nonlinear programming method of Wilson, Han, and
Powell with an augmented Lagrangian type line search function. Part 1:
convergence analysis. Numer. Math. 38, 83–114 (1982).

	111.	 Kraft, D. A software package for sequential quadratic programming. Report
DFVLR-FR 88–28 (Deutsche Forschungs- und Versuchsanstalt für Luft-
und Raumfahrt, 1988).

	112.	 Nash, S. G.Newton-type minimization via the Lanczos method. SIAM J.
Numer. Anal. 21, 770–788 (1984).

	113.	 Powell, M. J. D. A new algorithm for unconstrained optimization. Nonlinear
Programming 31–65 (1970).

	114.	 Steihaug, T.The conjugate gradient method and trust regions in large scale
optimization. SIAM J. Numer. Anal. 20, 626–637 (1983).

	115.	 Conn, A.R., Gould, N.I.M. & Toint, P.L. Trust Region Methods
(SIAM, 2000).

	116.	 Moré. Jorge, J. & Sorensen, D. C.Computing a trust region step. SIAM J. Sci.
Statist. Comput.4, (553–572 (1983).

	117.	 Gould, N. I. M., Lucidi, S., Roma, M. & Toint, P. L.Solving the trust-region
subproblem using the Lanczos method. SIAM J. Optim. 9, 504–525 (1999).

	118.	 Abbasi, H. Sparse: a more modern sparse array library. In Proceedings of the
17th Python in Science Conference (eds Akici, F. et al.) 27–30 (2018).

	119.	 Mohr, P. J., Newell, D. B. & Taylor, B. N.CODATA recommended values of
the fundamental physical constants: 2014. J. Phys. Chem. Ref. Data 45,
043102 (2016).

	120.	 Boisvert, R. F., Pozo, R., Remington, K., Barrett, R. F. & Dongarra, J. J.
Matrix Market: a web resource for test matrix collections. In Quality of
Numerical Software 125–137 (Springer, 1997).

	121.	 Rew, R. & Davis, G.NetCDF: an interface for scientific data access. IEEE
Comput. Graph. Appl. 10, 76–82 (1990).

	122.	 Duff, I.S., Grimes, R.G. & Lewis, J.G. Users’ guide for the Harwell-Boeing
sparse matrix collection (release I), http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.41.8922 (1992).

Acknowledgements
We thank everyone who has contributed to SciPy 1.0, from those who have posted
one comment about an issue through those who have made several small patches
and beyond.

Author contributions
P.V. and R.G. led the development of SciPy for over 10 years. T.E.O., E.J. and P.P. created
SciPy. T.R. and M.H. composed the manuscript with input from others. Other named
authors are SciPy core developers. All authors have contributed significant code,
documentation and/or expertise to the SciPy project. All authors reviewed
the manuscript.

Competing interests
The following statements indicate industry affiliations for authors in the main author list,
but not for authors in the SciPy 1.0 Contributor group beyond that. These affiliations
may have since changed. R.G. was employed by Quansight LLC. T.E.O., E.J. and R.K.
were employed by Enthought, Inc. T.E.O. and I.H. were employed by Anaconda Inc.
N.M. was employed by WayRay LLC. E.W.M. was employed by Bruker Biospin Corp. F.P.
and P.v.M. were employed by Google LLC.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41592-019-0686-2.

Correspondence should be addressed to R.G.

Peer review information Rita Strack was the primary editor on this article and managed
its editorial process and peer review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

Nature Methods | www.nature.com/naturemethods

http://www.numerical.rl.ac.uk/cute/netlib.html
http://www.numerical.rl.ac.uk/cute/netlib.html
https://github.com/scipy/scipy/pull/2885
https://github.com/scipy/scipy/pull/2885
https://github.com/scipy/scipy/pull/3174
https://github.com/scipy/scipy/pull/5653
https://github.com/scipy/scipy/pull/5653
https://github.com/ofek/pypinfo
https://software.intel.com/en-us/articles/intel-optimized-packages-for-the-intel-distribution-for-python
https://software.intel.com/en-us/articles/intel-optimized-packages-for-the-intel-distribution-for-python
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.8922
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.8922
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemethods

Perspective NaTure MeThodS

SciPy 1.0 Contributors

Aditya Vijaykumar40,41, Alessandro Pietro Bardelli42, Alex Rothberg15, Andreas Hilboll43,
Andreas Kloeckner44, Anthony Scopatz2, Antony Lee45, Ariel Rokem46, C. Nathan Woods9,
Chad Fulton47, Charles Masson48, Christian Häggström49, Clark Fitzgerald50, David A. Nicholson51,
David R. Hagen52, Dmitrii V. Pasechnik53, Emanuele Olivetti54, Eric Martin55, Eric Wieser56,
Fabrice Silva57, Felix Lenders58,59,60, Florian Wilhelm61, G. Young17, Gavin A. Price62, Gert-Ludwig Ingold63,
Gregory E. Allen64, Gregory R. Lee65,66, Hervé Audren67, Irvin Probst68, Jörg P. Dietrich69,70,
Jacob Silterra71, James T Webber72, Janko Slavič73, Joel Nothman74, Johannes Buchner75,76,
Johannes Kulick77, Johannes L. Schönberger15, José Vinícius de Miranda Cardoso78, Joscha Reimer79,
Joseph Harrington80, Juan Luis Cano Rodríguez81, Juan Nunez-Iglesias82, Justin Kuczynski83,
Kevin Tritz84, Martin Thoma85, Matthew Newville86, Matthias Kümmerer87, Maximilian Bolingbroke88,
Michael Tartre89, Mikhail Pak90, Nathaniel J. Smith91, Nikolai Nowaczyk92, Nikolay Shebanov93,
Oleksandr Pavlyk94, Per A. Brodtkorb95, Perry Lee96, Robert T. McGibbon97, Roman Feldbauer98,
Sam Lewis99, Sam Tygier100, Scott Sievert101, Sebastiano Vigna102, Stefan Peterson15, Surhud More103,104,
Tadeusz Pudlik105, Takuya Oshima106, Thomas J. Pingel107, Thomas P. Robitaille108, Thomas Spura109,
Thouis R. Jones110, Tim Cera111, Tim Leslie15, Tiziano Zito112, Tom Krauss113, Utkarsh Upadhyay114,
Yaroslav O. Halchenko115 and Yoshiki Vázquez-Baeza116

40International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India. 41Department of Physics, Birla Institute
of Technology and Science, Pilani, India. 42Independent researcher, Milan, Italy. 43Institute of Environmental Physics, University of Bremen, Bremen,
Germany. 44Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA. 45Laboratoire Photonique, Numérique et
Nanosciences UMR 5298, Université de Bordeaux, Institut d’Optique Graduate School, CNRS, Talence, France. 46The University of Washington eScience
Institute, The University of Washington, Seattle, WA, USA. 47Federal Reserve Board of Governors, Washington, DC, USA. 48Datadog Inc., New York, NY,
USA. 49HQ, Orexplore, Stockholm, Sweden. 50Statistics Department, University of California - Davis, Davis, CA, USA. 51Emory University, Atlanta, GA,
USA. 52Applied BioMath, Concord, MA, USA. 53Department of Computer Science, University of Oxford, Oxford, UK. 54NeuroInformatics Laboratory,
Bruno Kessler Foundation, Trento, Italy. 55Independent researcher, Chicago, IL, USA. 56Department of Engineering, University of Cambridge, Cambridge,
UK. 57Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France. 58Interdisciplinary Center for Scientific Computing (IWR), Heidelberg
University, Heidelberg, Germany. 59ABB Corporate Research, ABB AG, Ladenburg, Germany. 60Institut für Mathematische Optimierung, Technische
Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany. 61Independent researcher, Cologne, Germany. 62Lawrence Berkeley National
Laboratory, Berkeley, CA, USA. 63Institut für Physik, Universität Augsburg, Augsburg, Germany. 64Applied Research Laboratories, The University of Texas
at Austin, Austin, TX, USA. 65Department of Radiology, School of Medicine, University of Cincinnati, Cincinnati, OH, USA. 66Department of Radiology,
Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. 67Ascent Robotics Inc., Tokyo, Japan. 68ENSTA Bretagne, Brest, France. 69Faculty of
Physics, Ludwig-Maximilians-Universität, München, Germany. 70Excellence Cluster Universe, München, Germany. 71Independent researcher, Malden,
Massachusetts, USA. 72Data Sciences, Chan Zuckerberg Biohub, San Francisco, CA, USA. 73Faculty of Mechanical Engineering, University of Ljubljana,
Ljubljana, Slovenia. 74Sydney Informatics Hub, The University of Sydney, Camperdown, NSW, Australia. 75Instituto de Astrofísica, Pontificia Universidad
Católica de Chile, Santiago, Chile. 76Max Planck Institute for Extraterrestrial Physics, Garching, Germany. 77University of Stuttgart, Machine Learning
and Robotics Lab, Stuttgart, Germany. 78Department of Electrical Engineering, Universidade Federal de Campina Grande, Campina Grande, Brazil.
79Department of Computer Science, Kiel University, Kiel, Germany. 80Planetary Sciences Group and Florida Space Institute and Department of Physics,
University of Central Florida, Orlando, FL, USA. 81Independent researcher, Madrid, Spain. 82Monash Micro Imaging, Monash University, Clayton, VIC,
Australia. 83Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO, USA. 84Department of Physics
and Astronomy, Johns Hopkins University, Baltimore, MD, USA. 85Independent researcher, Munich, Germany. 86Center for Advanced Radiation Sources,
The University of Chicago, Chicago, IL, USA. 87University of Tübingen, Tübingen, Germany. 88Independent researcher, Rugby, UK. 89Two Sigma Investments,
New York, NY, USA. 90Department of Mechanical Engineering, Technical University of Munich, Garching, Germany. 91Independent researcher, Berkeley,
CA, USA. 92Independent researcher, London, UK. 93Independent researcher, Berlin, Germany. 94Intel Corp., Austin, TX, USA. 95Independent Researcher,
Horten, Norway. 96Independent researcher, Daly City, CA, USA. 97D. E. Shaw Research, New York, NY, USA. 98Division of Computational Systems Biology,
Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria. 99Independent researcher, Melbourne, Australia. 100School of
Physics and Astronomy, University of Manchester, Manchester, UK. 101Electrical and Computer Engineering, University of Wisconsin–Madison, Madison,
WI, USA. 102Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy. 103Inter-University Centre for Astronomy and Astrophysics,
Ganeshkhind, Pune, India. 104Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa-shi, Japan. 105Waymo LLC, Mountain View, CA,
USA. 106Faculty of Engineering, Niigata University, Nishi-ku, Niigata, Japan. 107Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
108Aperio Software, Headingley Enterprise and Arts Centre, Leeds, UK. 109Independent researcher, Duisburg, Germany. 110Broad Institute, Cambridge,
MA, USA. 111Independent researcher, Gainesville, FL, USA. 112Department of Psychology, Humboldt University of Berlin, Berlin, Germany. 113Epiq Solutions,
Schaumburg, IL, USA. 114Max Planck Institute for Software Systems, Kaiserslautern, Germany. 115Department of Psychology and Brain Sciences, Dartmouth
College, Hanover, NH, USA. 116Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

�

������������	
����
������������
�����������

���� !"�#$%#&'()*��+!,-.'!)("$') $/0'()*��+!,-1 "��)%#&2(33'�04')(� 1 ! '�5*6%!* !)�%3"��7)* � "��$(5%/%8%)0�9)* 6��:)*')6 "(/8%!*;<*%!9��3"��7%$!!)�(5)(� 9��5�#!%!) #50'#$)�'#!"'� #50%#� "��)%#&;=��9(�)* �%#9��3')%�#�#4')(� 1 ! '�5*"�8%5% !>! ?()*��!@1 9 � !'#$)* A$%)��%'8B�8%50�* 5:8%!);
2)')%!)%5!=��'88!)')%!)%5'8'#'80! !>5�#9%�3)*'))* 9�88�6%#&%) 3!'� "� ! #)%#)* 9%&(� 8 & #$>)'/8 8 & #$>3'%#) C)>��D)*�$!! 5)%�#;#E'��#9%�3 $<* C'5)!'3"8 !%F +G,9�� '5* C" �%3 #)'8&��("E5�#$%)%�#>&%7 #'!'$%!5�) #(3/ �'#$(#%)�93 '!(� 3 #)?!)') 3 #)�#6*)* �3 '!(� 3 #)!6 �)': #9��3$%!)%#5)!'3"8 !��6*)* �)* !'3 !'3"8 6'!3 '!(� $� " ') $80<* !)')%!)%5'8) !)+!,(! $?4H6*)* �)* 0'� �# I��)6�I!%$ $JGKLMNOPPOGMQRSQSMSTOUKVMWRMVRSNXYWRVMSOKRKLMWLMGZPR[MVRSNXYWRMPOXRMNOP\KR]MQRNTGŶURSMYGMQTRM_RQTOVSMSRNQYOG̀?$!5�%")%�#�9'885�7'�%') !) !) $?$!5�%")%�#�9'#0'!!(3")%�#!��5��� 5)%�#!>!(5*'!) !)!�9#��3'8%)0'#$'$a(!)3 #)9��3(8)%"8 5�3"'�%!�#!?9(88$!5�%")%�#�9)* !)')%!)%5'8"'�'3) �!%#58($%#&5 #)�'8) #$ #50+ ;&;3 '#!,���)* �/'!%5 !)%3') !+ ;&;� &� !!%�#5� 99%5% #),?4H7'�%')%�#+ ;&;!)'#$'�$$ 7%')%�#,��'!!�5%') $!)%3') !�9(#5 �)'%#)0+ ;&;5�#9%$ #5 %#) �7'8!,=��#(88*0"�)* !%!) !)%#&>)*) !)!)')%!)%5+ ;&;b>Q>X,6%)*5�#9%$ #5 %#) �7'8!> 99 5)!%F !>$ &� !�99� $�3'#$c7'8(#�) $dYeRMcMeZKURSMZSMR]ZNQMeZKURSMfTRGReRXMSUYQZWKR̀=��g'0 !%'#'#'80!%!>%#9��3')%�#�#)* 5*�%5 �9"�%��!'#$D'�:�75*'%#D�#) �'�8�!))%#&!=��*% �'�5*%5'8'#$5�3"8 C$!%&#!>%$ #)%9%5')%�#�9)* '""��"�%') 8 7 89��) !)!'#$9(88� "��)%#&�9�()5�3 !A!)%3') !�9 99 5)!%F !+ ;&;��* #h!V>B '�!�#h!X,>%#$%5')%#&*�6)* 06 � 5'85(8') $JUXMfRWMNOKKRNQYOGMOGMSQZQYSQYNSMiOXMWYOKOjYSQSMNOGQZYGSMZXQYNKRSMOGMPZGLMOiMQTRM\OYGQSMZWOeR̀2�9)6'� '#$5�$ B�8%50%#9��3')%�#'/�()'7'%8'/%8%)0�95�3"() �5�$ H')'5�88 5)%�#

H')''#'80!%!=��3'#(!5�%")!()%8%F%#&5(!)�3'8&��%)*3!��!�9)6'�)*')'� 5 #)�'8)�)* � ! '�5*/()#�)0)$!5�%/ $%#"(/8%!* $8%) �')(� >!�9)6'� 3(!)/ 3'$ '7'%8'/8)� $%)��!E� 7% 6 �!;k !)��#&80 #5�(�'& 5�$ $ "�!%)%�#%#'5�33(#%)0� "�!%)��0+ ;&;l%)m(/,;2)* 4')(� 1 ! '�5*&(%$ 8%# !9��!(/3%))%#&5�$ @!�9)6'� 9��9(�)* �%#9��3')%�#;H')'B�8%50%#9��3')%�#'/�()'7'%8'/%8%)0�9$')'?883'#(!5�%")!3(!)%#58($ '$')''7'%8'/%8%)0!)') 3 #);<*%!!)') 3 #)!*�(8$"��7%$)* 9�88�6%#&%#9��3')%�#>6* � '""8%5'/8 -I?55 !!%�#5�$!>(#%n(%$ #)%9% �!>��6 /8%#:!9��"(/8%580'7'%8'/8 $')'!)!I?8%!)�99%&(� !)*')*'7 '!!�5%') $�'6$')'I?$!5�%")%�#�9'#0� !)�%5)%�#!�#$')''7'%8'/%8%)0

1'89l�33 �!>D'))m'/ �8'#$><08 �1 $$0opEqErpos

tt
t
tt
t
t
ttt

.'#&('& 5*�%5 $')'6'!5�88 5) $(!%#&)* 8%#&(%!)8%/�'�0>'#$%#"'�)%5(8'�(!%#&'!" 5%'89 ')(� /�'#5*�9)*%!"��a 5))*')%!�" #80'7'%8'/8 -*))"!-EE&%)*(/;5�3E&%)*(/E8%#&(%!)E"(88EuovoH')'9��=%&(� r6'!5�88 5) $(!%#&)* "0) !)I5�7'#$&5�7"'5:'& !wH�5: �6'!(! $)�3'#'& 5�#)'%# �!@)* C'5)!�(�5 5�$ (! $%!�" #80'7'%8'/8 -*))"!-EE&%)*(/;5�3E)08 �a � $$0E!5%"0I5�7I)�'5:H')'9��9%&(� x6'!5�88 5) $(!%#&)* ?%�!" $y 8�5%)0+'!77 �!%�#p;u,"'5:'& II!)* %��" #80'7'%8'/8 � "�!%)��0-*))"!-EE&%)*(/;5�3E'%�!" $I7 8�5%)0E'!74?

?8825%B08%/�'�0!�(�5 5�$ '#$3�!)$')'& # �') $9��)* 5(�� #)!)($0'� '7'%8'/8 %#)* 25%B0l%)m(/� "�!%)��0>*))"!-EE&%)*(/;5�3E!5%"0;2�3 !(""��)%#&5�$ '#$$')'*'7 '8!�/ #!)�� $%#�)* �"(/8%5� "�!%)��% !5%) $/0)*%!3'#(!5�%");

z

������������	
����
������������
�����������

=% 8$I!" 5%9%5� "��)%#&B8 '! ! 8 5))* �# / 8�6)*')%!)* / !)9%)9��0�(�� ! '�5*;{90�('� #�)!(� >� '$)* '""��"�%') ! 5)%�#!/ 9�� 3':%#&0�(�! 8 5)%�#;.%9 !5% #5 ! g *'7%�(�'8@!�5%'8!5% #5 ! A5�8�&%5'8> 7�8()%�#'�0@ #7%��#3 #)'8!5% #5 !=��'� 9 � #5 5�"0�9)* $�5(3 #)6%)*'88! 5)%�#!>! #')(� ;5�3E$�5(3 #)!E#�I� "��)%#&I!(33'�0I98');"$9.%9 !5% #5 !!)($0$!%&#?88!)($% !3(!)$%!58�! �#)* ! "�%#)! 7 #6* #)* $%!58�!(� %!# &')%7 ;2'3"8 !%F
H')' C58(!%�#!
1 "8%5')%�#
1'#$�3%F')%�#
g8%#$%#&
g *'7%�(�'8@!�5%'8!5% #5 !!)(0 !%&#?88!)($% !3(!)$%!58�! �#)* ! "�%#)! 7 #6* #)* $%!58�!(� %!# &')%7 ;2)($0$!5�%")%�#
1 ! '�5*!'3"8
2'3"8%#&!)�') &0
H')'5�88 5)%�#
<%3%#&H')' C58(!%�#!
4�#I"'�)%5%"')%�#
1'#$�3%F')%�#
A5�8�&%5'8> 7�8()%�#'�0@ #7%��#3 #)'8!5% #5 !!)(0 !%&#?88!)($% !3(!)$%!58�! �#)* ! "�%#)! 7 #6* #)* $%!58�!(� %!# &')%7 ;2)($0$!5�%")%�#

|RSNXYWRMTOfMSZP\KRMSY}RMfZSMVRQRXPYGRV~MVRQZYKYGjMZGLMSQZQYSQYNZKMPRQTOVSMUSRVMQOM\XRVRQRXPYGRMSZP\KRMSY}RMJ�MYiMGOMSZP\KR�SY}RMNZKNUKZQYOGMfZSM\RXiOXPRV~MVRSNXYWRMTOfMSZP\KRMSY}RSMfRXRMNTOSRGMZGVM\XOeYVRMZMXZQYOGZKRMiOXMfTLMQTRSRMSZP\KRMSY}RSMZXRMSUiiYNYRGQ̀|RSNXYWRMZGLMVZQZMR]NKUSYOGS̀M�iMGOMVZQZMfRXRMR]NKUVRVMiXOPMQTRMZGZKLSRS~MSQZQRMSOMJ�MYiMVZQZMfRXRMR]NKUVRV~MVRSNXYWRMQTRMR]NKUSYOGSMZGVMQTRMXZQYOGZKRMWRTYGVMQTRP~MYGVYNZQYGjMfTRQTRXMR]NKUSYOGMNXYQRXYZMfRXRM\XR�RSQZWKYSTRV̀M|RSNXYWRMQTRMPRZSUXRSMQZ�RGMQOMeRXYiLMQTRMXR\XOVUNYWYKYQLMOiMQTRMR]\RXYPRGQZKMiYGVYGjS̀M�iMZKKMZQQRP\QSMZQMXR\KYNZQYOGMfRXRMSUNNRSSiUK~MNOGiYXPMQTYSMJ�MYiMQTRXRMZXRMZGLMiYGVYGjSMQTZQMfRXRMGOQMXR\KYNZQRVMOXMNZGGOQMWRMXR\XOVUNRV~MGOQRMQTYSMZGVMVRSNXYWRMfTL̀|RSNXYWRMTOfMSZP\KRS�OXjZGYSPS�\ZXQYNY\ZGQSMfRXRMZKKONZQRVMYGQOMR]\RXYPRGQZKMjXOU\S̀M�iMZKKONZQYOGMfZSMGOQMXZGVOP~MVRSNXYWRMTOfMNOeZXYZQRSMfRXRMNOGQXOKKRVMJ�MYiMQTYSMYSMGOQMXRKReZGQMQOMLOUXMSQUVL~MR]\KZYGMfTL̀|RSNXYWRMfTRQTRXMQTRMYGeRSQYjZQOXSMfRXRMWKYGVRVMQOMjXOU\MZKKONZQYOGMVUXYGjMVZQZMNOKKRNQYOGMZGV�OXMZGZKLSYS̀M�iMWKYGVYGjMfZSMGOQM\OSSYWKR~MVRSNXYWRMfTLMJ�MR]\KZYGMfTLMWKYGVYGjMfZSMGOQMXRKReZGQMQOMLOUXMSQUVL̀

�XYRiKLMVRSNXYWRMQTRMSQUVLMQL\RMYGNKUVYGjMfTRQTRXMVZQZMZXRM̂UZGQYQZQYeR~M̂UZKYQZQYeR~MOXMPY]RV�PRQTOVSM�R̀j̀M̂UZKYQZQYeRMNXOSS�SRNQYOGZK~MÛZGQYQZQYeRMR]\RXYPRGQZK~MPY]RV�PRQTOVSMNZSRMSQUVL�̀M�QZQRMQTRMXRSRZXNTMSZP\KRM�R̀j̀M�ZXeZXVMUGYeRXSYQLMUGVRXjXZVUZQRS~MeYKKZjRXSMYGMXUXZKM�GVYZ�MZGVM\XOeYVRMXRKReZGQMVRPOjXZ\TYNMYGiOXPZQYOGM�R̀j̀MZjR~MSR]�MZGVMYGVYNZQRMfTRQTRXMQTRMSZP\KRMYSMXR\XRSRGQZQYeR̀McXOeYVRMZMXZQYOGZKRMiOXMQTRMSQUVLMSZP\KRMNTOSRG̀MbOXMSQUVYRSMYGeOKeYGjMR]YSQYGjMVZQZSRQS~M\KRZSRMVRSNXYWRMQTRMVZQZSRQMZGVMSOUXNR̀|RSNXYWRMQTRMSZP\KYGjM\XONRVUXRM�R̀j̀MXZGVOP~MSGOfWZKK~MSQXZQYiYRV~MNOGeRGYRGNR�̀M|RSNXYWRMQTRMSQZQYSQYNZKMPRQTOVSMQTZQMfRXRMUSRVMQOM\XRVRQRXPYGRMSZP\KRMSY}RMJ�MYiMGOMSZP\KR�SY}RMNZKNUKZQYOGMfZSM\RXiOXPRV~MVRSNXYWRMTOfMSZP\KRMSY}RSMfRXRMNTOSRGMZGVM\XOeYVRMZMXZQYOGZKRMiOXMfTLMQTRSRMSZP\KRMSY}RSMZXRMSUiiYNYRGQ̀MbOXM̂UZKYQZQYeRMVZQZ~M\KRZSRMYGVYNZQRMfTRQTRXMVZQZMSZQUXZQYOGMfZSMNOGSYVRXRV~MZGVMfTZQMNXYQRXYZMfRXRMUSRVMQOMVRNYVRMQTZQMGOMiUXQTRXMSZP\KYGjMfZSMGRRVRV̀cXOeYVRMVRQZYKSMZWOUQMQTRMVZQZMNOKKRNQYOGM\XONRVUXR~MYGNKUVYGjMQTRMYGSQXUPRGQSMOXMVReYNRSMUSRVMQOMXRNOXVMQTRMVZQZM�R̀j̀M\RGMZGVM\Z\RX~MNOP\UQRX~MRLRMQXZN�RX~MeYVROMOXMZUVYOMR̂UY\PRGQ�MfTRQTRXMZGLOGRMfZSM\XRSRGQMWRSYVRSMQTRM\ZXQYNY\ZGQ�S�MZGVMQTRMXRSRZXNTRX~MZGVMfTRQTRXMQTRMXRSRZXNTRXMfZSMWKYGVMQOMR]\RXYPRGQZKMNOGVYQYOGMZGV�OXMQTRMSQUVLMTL\OQTRSYSMVUXYGjMVZQZMNOKKRNQYOG̀�GVYNZQRMQTRMSQZXQMZGVMSQO\MVZQRSMOiMVZQZMNOKKRNQYOG̀M�iMQTRXRMYSMZMjZ\MWRQfRRGMNOKKRNQYOGM\RXYOVS~MSQZQRMQTRMVZQRSMiOXMRZNTMSZP\KRMNOTOXQ̀
�iMGOMVZQZMfRXRMR]NKUVRVMiXOPMQTRMZGZKLSRS~MSQZQRMSOMJ�MYiMVZQZMfRXRMR]NKUVRV~M\XOeYVRMQTRMR]ZNQMGUPWRXMOiMR]NKUSYOGSMZGVMQTRMXZQYOGZKRMWRTYGVMQTRP~MYGVYNZQYGjMfTRQTRXMR]NKUSYOGMNXYQRXYZMfRXRM\XR�RSQZWKYSTRV̀�QZQRMTOfMPZGLM\ZXQYNY\ZGQSMVXO\\RVMOUQ�VRNKYGRVM\ZXQYNY\ZQYOGMZGVMQTRMXRZSOG�S�MjYeRGMJ�M\XOeYVRMXRS\OGSRMXZQRMJ�MSQZQRMQTZQMGOM\ZXQYNY\ZGQSMVXO\\RVMOUQ�VRNKYGRVM\ZXQYNY\ZQYOG̀�iM\ZXQYNY\ZGQSMfRXRMGOQMZKKONZQRVMYGQOMR]\RXYPRGQZKMjXOU\S~MSQZQRMSOMJ�MVRSNXYWRMTOfM\ZXQYNY\ZGQSMfRXRMZKKONZQRVMQOMjXOU\S~MZGVMYiMZKKONZQYOGMfZSMGOQMXZGVOP~MVRSNXYWRMTOfMNOeZXYZQRSMfRXRMNOGQXOKKRV̀

�XYRiKLMVRSNXYWRMQTRMSQUVL̀MbOXM̂UZGQYQZQYeRMVZQZMYGNKUVRMQXRZQPRGQMiZNQOXSMZGVMYGQRXZNQYOGS~MVRSYjGMSQXUNQUXRM�R̀j̀MiZNQOXYZK~MGRSQRV~MTYRXZXNTYNZK�~MGZQUXRMZGVMGUPWRXMOiMR]\RXYPRGQZKMUGYQSMZGVMXR\KYNZQRS̀

�

������������	
����
�����
���
������������

�������
�����������

1 ! '�5*!'3"8
2'3"8%#&!)�') &0
H')'5�88 5)%�#<%3%#&'#$!"')%'8!5'8
H')' C58(!%�#!
1 "��$(5%/%8%)0
1'#$�3%F')%�#
g8%#$%#&
H%$)* !)($0%#7�87 9% 8$6��:� � ! 4�4�1 "��)%#&9��!" 5%9%53') �%'8!>!0!) 3!'#$3)*�$!k k � n(%� %#9��3')%�#9��3'()*��!'/�()!�3)0" !�9�93') �%'8!> C" �%3 #)'8!0!) 3!'#$3)*�$!(! $%#%#3'#0!)($% !;m � >%#$%5') 6*)* � '5*3') �%'8>!0!) 3����3)*�$8%!) $%!%!� 8 7'#))�)�0�(�!)($0;{9{90�('� #�)!(� %9%9'8%!)%) 3'""8% !)�)�0�(�� ! '�5*>� '$)* '""��"�%') ! 5)%�#/ 9�� ! 8 5)%#&'� !"�#! ;D') �%'8!@ C" �%3 #)'8!0!) 3!#E'{#7�87 $%#%#)* !)($0?#)%/�$% !A(:'�0�)%55 888%# !B'8' �#)�8�&0?#%3'8!'#$�)* ���&'#%!3!m(3'#� ! '�5*"'�)%5%"'#)!�8%#%5'8$')'

D)*�$!#E'{#7�87 $%#%#)* !)($0�*{BI! n=8�650)�3)�0D1{I/'! $# (��%3'&%#&

|RSNXYWRMQTRMXRSRZXNTMSZP\KRM�R̀j̀MZMjXOU\MOiMQZjjRVMcZSSRXMVOPRSQYNUS~MZKKM�QRGONRXRUSMQTUXWRXYMfYQTYGMJXjZGMcY\RM�ZNQUSM�ZQYOGZKM_OGUPRGQ�~MZGVM\XOeYVRMZMXZQYOGZKRMiOXMQTRMSZP\KRMNTOYNR̀M�TRGMXRKReZGQ~MVRSNXYWRMQTRMOXjZGYSPMQZ]Z~MSOUXNR~MSR]~MZjRMXZGjRMZGVMZGLMPZGY\UKZQYOGS̀M�QZQRMfTZQM\O\UKZQYOGMQTRMSZP\KRMYSMPRZGQMQOMXR\XRSRGQMfTRGMZ\\KYNZWKR̀MbOXMSQUVYRSMYGeOKeYGjMR]YSQYGjMVZQZSRQS~MVRSNXYWRMQTRMVZQZMZGVMYQSMSOUXNR̀�OQRMQTRMSZP\KYGjM\XONRVUXR̀M|RSNXYWRMQTRMSQZQYSQYNZKMPRQTOVSMQTZQMfRXRMUSRVMQOM\XRVRQRXPYGRMSZP\KRMSY}RMJ�MYiMGOMSZP\KR�SY}RMNZKNUKZQYOGMfZSM\RXiOXPRV~MVRSNXYWRMTOfMSZP\KRMSY}RSMfRXRMNTOSRGMZGVM\XOeYVRMZMXZQYOGZKRMiOXMfTLMQTRSRMSZP\KRMSY}RSMZXRMSUiiYNYRGQ̀|RSNXYWRMQTRMVZQZMNOKKRNQYOGM\XONRVUXR~MYGNKUVYGjMfTOMXRNOXVRVMQTRMVZQZMZGVMTOf̀
�GVYNZQRMQTRMSQZXQMZGVMSQO\MVZQRSMOiMVZQZMNOKKRNQYOG~MGOQYGjMQTRMiXR̂URGNLMZGVM\RXYOVYNYQLMOiMSZP\KYGjMZGVM\XOeYVYGjMZMXZQYOGZKRMiOXMQTRSRMNTOYNRS̀M�iMQTRXRMYSMZMjZ\MWRQfRRGMNOKKRNQYOGM\RXYOVS~MSQZQRMQTRMVZQRSMiOXMRZNTMSZP\KRMNOTOXQ̀M�\RNYiLMQTRMS\ZQYZKMSNZKRMiXOPMfTYNTMQTRMVZQZMZXRMQZ�RG�iMGOMVZQZMfRXRMR]NKUVRVMiXOPMQTRMZGZKLSRS~MSQZQRMSOMJ�MYiMVZQZMfRXRMR]NKUVRV~MVRSNXYWRMQTRMR]NKUSYOGSMZGVMQTRMXZQYOGZKRMWRTYGVMQTRP~MYGVYNZQYGjMfTRQTRXMR]NKUSYOGMNXYQRXYZMfRXRM\XR�RSQZWKYSTRV̀|RSNXYWRMQTRMPRZSUXRSMQZ�RGMQOMeRXYiLMQTRMXR\XOVUNYWYKYQLMOiMR]\RXYPRGQZKMiYGVYGjS̀MbOXMRZNTMR]\RXYPRGQ~MGOQRMfTRQTRXMZGLMZQQRP\QSMQOMXR\RZQMQTRMR]\RXYPRGQMiZYKRVMJ�MSQZQRMQTZQMZKKMZQQRP\QSMQOMXR\RZQMQTRMR]\RXYPRGQMfRXRMSUNNRSSiUK̀|RSNXYWRMTOfMSZP\KRS�OXjZGYSPS�\ZXQYNY\ZGQSMfRXRMZKKONZQRVMYGQOMjXOU\S̀M�iMZKKONZQYOGMfZSMGOQMXZGVOP~MVRSNXYWRMTOfMNOeZXYZQRSMfRXRMNOGQXOKKRV̀M�iMQTYSMYSMGOQMXRKReZGQMQOMLOUXMSQUVL~MR]\KZYGMfTL̀|RSNXYWRMQTRMR]QRGQMOiMWKYGVYGjMUSRVMVUXYGjMVZQZMZN̂UYSYQYOGMZGVMZGZKLSYS̀M�iMWKYGVYGjMfZSMGOQM\OSSYWKR~MVRSNXYWRMfTLMJ�MR]\KZYGMfTLMWKYGVYGjMfZSMGOQMXRKReZGQMQOMLOUXMSQUVL̀t

tttttt

ttt

	SciPy 1.0: fundamental algorithms for scientific computing in Python

	Background

	SciPy begins.
	SciPy matures.
	SciPy today.
	SciPy is an open-source package that builds on the strengths of Python and Numeric, providing a wide range of fast scientif ...
	Package organization

	Architecture and implementation choices

	Project scope.
	Language choices.
	API and ABI evolution.

	Key technical improvements

	Data structures.
	Sparse matrices
	cKDTree

	Unified bindings to compiled code.
	LowLevelCallable

	Cython bindings for BLAS, LAPACK and special.
	Numerical optimization.
	Linear optimization
	Nonlinear optimization: local minimization
	Nonlinear optimization: global minimization

	Statistical distributions.
	Polynomial interpolators.
	Test and benchmark suite.
	Test suite
	Benchmark suite

	Project organization and community

	Governance.
	Maintainers and contributors.
	Funding.
	Downstream projects.

	Discussion

	Reporting Summary.

	Acknowledgements

	Fig. 1 Major milestones from SciPy’s initial release in 2001 to the release of SciPy 1.
	Fig. 2 Python and compiled code volume in SciPy over time.
	Fig. 3 Results of the scipy.
	Table 1 Optimization methods from minimize.
	Table 2 Summary of SciPy Roadmap items following 1.

