
Numerical minimization of a second-order functional for image segmentation

Massimo Zanetti∗

Department of Information and Communication Technology, University of Trento, I-38123 Trento, Italy

Valeria Ruggiero, Michele Miranda Jr

Dipartimento di Matematica e Informatica, Università di Ferrara, I-44122 Ferrara, Italy

Abstract

In this paper we address the numerical minimization of a variational approximation of the Blake-Zisserman func-
tional given by Ambrosio, Faina and March. Our approach exploits a compact matricial formulation of the objective
functional and its decomposition into quadratic sparse convex sub-problems. This structure is well suited for using
a block-coordinate descent method that cyclically determines a descent direction with respect to a block of variables
by few iterations of a preconditioned conjugate gradient algorithm. We prove that the computed search directions are
gradient related and, with convenient step-sizes, we obtain that any limit point of the generated sequence is a station-
ary point of the objective functional. An extensive experimentation on different datasets including real and synthetic
images and digital surface models, enables us to conclude that: (1) the numerical method has satisfying performance
in terms of accuracy and computational time; (2) a minimizer of the proposed discrete functional preserves the ex-
pected good geometrical properties of the Blake-Zisserman functional, i.e., it is able to detect first and second order
edge-boundaries in images; (3) the method allows the segmentation of large images.

Keywords: Blake-Zisserman functional, variational segmentation, edge-crease detection, block-coordinate descent
method

1. Introduction

Segmentation is a typical and widely investigated topic in image processing. It can be defined as the process of
partitioning an image into groups of pixels, called segments, in order to represent its content at an object level that
potentially simplifies the interpretation of the image itself.
A class of segmentation methods recognizes the objects as the regions delimited by edge-boundaries, i.e., sets of
pixels presenting sharp variations of intensity. Mathematical methods for segmentation are mainly divided into two
categories: methods based on PDEs and variational methods. PDE’s approaches originated in the early 80s with the
isotropic scale-space noise-reduction coarsing based on heat diffusion proposed in [1]. Then, anisotropic diffusion
have been introduced, which inhibits diffusion according to local properties of the image [2]. Another approach,
which is a particular case of anisotropic diffusion, has the interesting property that the related PDE represents the flow
generated by the minimization of the Total Variation [3]. Principal issues of PDEs approaches are mainly due to the
difficult interpretation of the role that parameters play in the model and the physical meaning of solutions [4, 5].

In this perspective, the variational approach seems to be more intuitive and allows for having a proper and explicit
modelization of all the components: noise-reduction, edge-detection, scale-space representation. By fully exploiting
a variational framework, Mumford and Shah [6] proposed a model for image segmentation based on the minimization
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of the following functional

MS(u,K) =

∫
Ω\K
|∇u|2 dx + αH1(K ∩Ω) + µ

∫
Ω

|u − g|2 dx. (1)

Here Ω ⊂ R2 and g ∈ L∞(Ω) is the input image. The minimization is among all the functions continuously differ-
entiable outside K, i.e. u ∈ C1(Ω \ K), where K ⊂ Ω is compact. H1 is the 1-dimensional Hausdorff measure, and
α, µ are positive parameters. The minimization of the first term forces u to be smooth (a piecewise constant behavior
is expected) outside K. Because of the term H1(K ∩ Ω), K is a one-dimensional set with finite length. The last
integral term is a distance term that forces u to be close to the original image g. The set K can be easily understood
as the set of the discontinuities of u, indeed this is a typical problem belonging to a general class of problems called
free discontinuities problems, [7]. Kawohl found a strict relationship between the Mumford-Shah and Perona-Malik
approaches to segmentation [8]. In particular, he showed how the parameters of the Mumford-Shah (MS) functional
can be interpreted as parameters regulating an anisotropic diffusion process applied to the image g.
From a practical point of view, the minimization of the MS functional (1) cannot be addressed because the measure
termH1(K ∩Ω) is not semi-continuous with respect to any reasonable topology. As suggested in [7], by relaxing the
problem into the weaker space of Special Functions of Bounded Variation S BV(Ω), the methods of Calculus of Vari-
ations can be used to prove the existence of minima [9]. The advantage of this approach is that for every u ∈ S BV(Ω),
the discontinuity set S u is uniquely determined by geometrical properties of the function. This results in a functional
formulation of the MS problem that uniquely depends on the function u:

G(u) =

∫
Ω

|∇u|2 dx + αH1(S u ∩Ω) + µ

∫
Ω

|u − g|2 dx, (2)

where u ∈ S BV(Ω) and S u is the complement set of Lebesgue points of u. Using compactness and lower semi-
continuity theorems [10] it is showed that under mild conditions, there exists a solution such that H1(S u) < ∞.
Moreover, by regularity results one has thatH1(S u \ S u) = 0 and the couple (u, S u) can be identified with a minimizer
of the strong formulation.

Based on this relaxed formulation, many techniques have been proposed to tackle the problem of numerically
computing a minimizer. The free discontinuity term poses a serious problem. Ambrosio and Tortorelli [11], by
exploiting a nice result of Modica and Mortola [12], proposed a Γ-convergence approximation via integral functionals
defined on proper Sobolev spaces. In their approximation the discontinuity set is replaced by an auxiliary function that
plays the role of indicator function. Numerical solutions based on the Ambrosio-Tortorelli approximation are given
in the framework of Finite Element Method (FEM) in [13], and via finite-difference discretization of Euler-Lagrange
equations in [14]. In [15], a Γ-convergence approximation using local integral functionals defined on a discrete space
is given. Numerical implementation of the method is presented in [16]. Another minimization technique is based on
a convex relaxation of the functional [17]. A level set approach to minimization is presented in [18]. With no intent
of being exhaustive, we refer the interested reader to the overview on the numerical approaches for solving the MS
functional given in [19].

1.1. The Blake-Zisserman model for image segmentation

Being a first-order model, the MS variational segmentation suffers of some side effects [20, 21]. The minimization
of the gradient norm forces the solution to be locally constant (zero gradient). In those regions where the gradient of
g is too steep, this local approximation results in a step-wise function characterized by many fictitious discontinuities.
This phenomenon is well-known as over-segmentation of steep gradients. Moreover, the minimization of the length
term results in an approximation of complex edge junctions by triple-junctions where edges meet at 2/3π wide angles.
This may lead to a degradation of the real geometry of boundaries. Lastly, properly because of its first-order nature,
the MS model is unable to detect second-order geometrical features such as points of gradient discontinuity, see Figure
1. Since very often such points correspond to object boundaries, the MS model has the limitation that is not capable
of detecting them.

With the specific intent to overcome such problems, Blake and Zisserman proposed a variational model based on
second order derivatives, free discontinuities and free gradient discontinuities [20]. In their original formulation one
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Figure 1: Limitation of the MS model of detecting second-order geometrical features. (a,b) Gray-scale image with second-order edges. (c)
Edge-detection via Mumford-Shah functional compared to (d) a full theoretical exact detection of 2nd-order features.

has to minimize

BZ(u,K0,K1) =

∫
Ω\(K0∪K1)

|∇2u|2 dx + µ

∫
Ω

|u − g|2 dx

+ αH1(K0 ∩Ω) + βH1((K1 \ K0) ∩Ω), (3)

among all functions u that are twice differentiable (with continuity) outside K0 ∪ K1 and at least differentiable (with
continuity) outside K0. K0 and K1 vary among all the compact sets such that K0∪K1 is closed in Ω. µ, α, β are positive
parameters. Here ∇2u denotes the Hessian matrix of u. Notice that, for an admissible solution u, discontinuities are
allowed both on K0 ∪ K1, whereas discontinuities of the gradient are allowed only on K1. α and β are contrast
parameters regulating the total length of the discontinuity sets.
As in the MS case, also for the BZ functional minima existence and numerical issues can be addressed by considering
a relaxation of the functional. Following [22], a relaxation in the space of Generalized Special Functions of Bounded
Variation GS BV(Ω), is given by the functional

F (u) =

∫
Ω

(
µ|u − g|2 + |∇2u|2

)
dx + (α − β)H1(S u) + βH1(S ∇u ∪ S u), (4)

where u ∈ GS BV2(Ω) := {w ∈ GS BV(Ω) : ∇w ∈ [GS BV(Ω)]2}. In this weaker space, a proper definition of ∇2u
and S ∇u (the theoretic discontinuity set of ∇u) as geometrical property of the function u, is possible. By regularity
arguments it can be proved [23] that a minimizer of (4) can be identified with a minimizing couple of the strong
formulation, provided β ≤ α ≤ 2β. Thus, the optimal set K0 ∪ K1 is recovered via the discontinuity set S u and the
gradient discontinuity set S ∇u.

A vivid research interest is devoted to the Blake-Zisserman functional as it represents the generalization of the
well-known and widely used Mumford-Shah. From a theoretical point of view it is a challenging topic, well-posedness
of the problem and uniqueness of the solution [24] as well as regularity properties of minimizers [25, 26, 27] are still
under investigation. Recently, a concise survey of the main results about the functional have been presented [28].
Segmentation based on the Blake-Zisserman model, because of its second-order nature, is specifically suitable for
addressing problems such as: (1) image inpainting [29], where the functional minimization allows for predicting
partially occluded regions in an image and their contours continuation, and (2) 3D data segmentation [30], where the
unique capability of the functional of tracing second-order edges (creases) allows for precisely locating planar objects
(such as roof planes) in remote sensing 3D models of urban areas.

1.2. Variational approximation of the Blake-Zisserman relaxed functional

Implementing gradient descent of (3) with respect to the unknown free discontinuity sets is extremely difficult.
Γ-convergence has shown to be fundamental to solve the problem of numerically computing a minimizer. This notion
of convergence, suitable for functionals, has been introduced by [31]. For a deep treatment of this topic we refer
to [32, 33]. The key point in Γ-convergence is that a specific functional, which may not have good properties for
minimization, can be approximated by a sequence of regular functionals all admitting minimizers. The sequence of
these approximate minimizers converges (in the classical sense) to a minimizer of the original objective functional.
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Besides its importance as mathematical tool, Γ-convergence is very attractive also from a numerical point of view as
it allows for the solution of several difficult numerical problems in Computer Vision, Physics, and many other fields.
See for instance [33, 34].

Following the idea of Ambrosio and Tortorelli, in [35] a Γ-convergence result is proved for the BZ functional
in dimension 1. A full proof in dimension 2 and a partial result for any dimension n is given by Ambrosio, Faina
and March [36]. The authors, by properly adapting the techniques of [35] and [11], have introduced two auxiliary
functions s, z : Ω→ [0, 1] (aimed at approximating the indicator functions of the discontinuity sets) to the model and
proposed a Γ-convergence approximation of F via the family of uniformly elliptic functionals

Fε(s, z, u) = δ

∫
Ω

z2|∇2u|2 dx + ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α − β)
∫

Ω

ε |∇s|2 +
1
4ε

(s − 1)2 dx

+ β

∫
Ω

ε |∇z|2 +
1
4ε

(z − 1)2 dx

+ µ

∫
Ω

|u − g|2 dx, (5)

where (s, z, u) ∈ [W1,2(Ω, [0, 1])]2 × W2,2(Ω) =: D(Ω). Here ε is the convergence continuous parameter, ξε , oε are
infinitesimals and the convergence is intended for ε → 0. To prove Γ-convergence, one has to show that for any
u ∈ GS BV2(Ω), s ≡ 1, z ≡ 1 the two following properties are verified:
Liminf inequality: for any sequence {(sε , zε , uε)}ε>0 ⊂ D(Ω) that [L1(Ω)]3-converges to (s, z, u) it holds that F (u) ≤
lim infε→0 Fε(sε , zε , uε).
Limsup inequality: there exists a sequence {(sε , zε , uε)}ε>0 ⊂ D(Ω) that [L1(Ω)]3-converges to (s, z, u) such that
lim supε→0 Fε(sε , zε , uε) ≤ F (u).
By standard arguments of functional analysis it is possible to prove that for any ε > 0 the functional Fε always admits
a minimizing triplet. Let us denote it by (sε , zε , uε). By sending ε → 0, thanks to the compactness properties of the
Γ-convergence, the sequence {(sε , zε , uε)}ε>0 converges in the [L1(Ω)]3-norm to a triplet (s, z, u) where u is a minimizer
of the limit functional F and s, z ≡ 1 almost everywhere over Ω.1

The constructive part of the Γ-convergence (Limsup inequality) provides us the tremendous advantage of keeping
trace of the discontinuity sets S u and S u ∪ S ∇u via their regular function approximations. For a fixed ε > 0, the
two discontinuity sets, enjoying the regularity properties of GS BV2(Ω) functions, are approximated by sε and zε
(respectively) using a slicing argument and Coarea-formula for Lipschitz functions [36]. Let S be either S u or S u∪S ∇u

and let us consider a 2-dimensional orthogonal slice of S (see Figure 2). The idea is to build a function σε that is 0
in a tubular neighborhood of radius bε of the set S and that tends to 1 smoothly elsewhere. The tubular neighborhood
shrinks as ε → 0. Formally the function σε is defined as:

σε :=


0, (S )bε

1 − ηε , Ω \ (S )bε+aε

hε ◦ τ, elsewhere
(6)

where aε , bε , ηε are infinitesimals as ε → 0, τ(y) := dist (y, S ) and (S )r := {y ∈ R2 : dist (y, S ) < r}. The function
hε (the blue piece of function in Figure 2) is obtained as the solution of the differential problem h′ = (1 − h)/2ε,
h(bε) = 0, where h(bε + aε) = 1 − ηε . Exploiting the Schwartz inequality a2 + b2 ≥ 2ab it is possible to prove that
such hε is energetically optimal in the class of the admissible functions (a general result is given in [12] and used
for the approximation of discontinuity sets in [11, 36]). Because of the global minimization of Fε , the distance term
µ|uε − g|2 keeps the function uε close to g. High values of |∇uε | (associated to discontinuities of g) and high values
of |∇2uε | (associated to crease points of g) force the transition of the functions sε and zε from 1 to 0. Elsewhere, the
minimization of the two terms containing the differential operators causes the smoothing of g. We remark here the

1In practice it is assumed thatH2({σ = 0}) = 0 and 0 ≤ H1({σ = 0}) < ∞, for either σ = s and σ = z.
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Figure 2: Slice section of the discontinuity set S and its approximation via the recovering function σε realizing the Γ-convergence.

importance of the parameters δ, µ, α, β, that control the ratio at which the whole mechanism described before takes
place.

From the discussion above it follows that, for small values of ε, the computation of a minimizing triplet of (5)
provides uε , an approximation of a real minimizer u of F , and sε , zε , the functions that map the tubular neighborhoods
of the discontinuity sets S u and S ∇u ∪ S u, respectively. The price to pay for having such nice outputs is computational
complexity. In the remainder of the paper we will show how the explicit minimization of (5) can be addressed in
an efficient way by exploiting the nice properties of the functional and a compact formulation via finite-difference
schemes enjoying good properties of convergence.

2. Numerical minimization of the Blake-Zisserman functional

In this section the numerical minimization of (5) is addressed. Firstly the functional is discretized and written in
matricial form. Because of nice properties of the functional, the finite-difference discretization of the functional leads
to a quadratic function with respect to each block variable when the others two are left fixed.

2.1. Discretization

A simple discretization technique, commonly used for computer vision problems (see for example [37, 38]), can
be applied to the functional (5) in a straightforward way. The rectangular domain Ω ⊂ R2 is discretized by a lattice of
points Λ =

{
(itx, jty); i = 1, . . . ,N, j = 1, . . . ,M

}
with step sizes tx and ty on the x and y directions respectively, giving

rise to a point grid Λ of size n := NM. Using the standard representation of grey-scale images as matrices, the values
of the image g on the grid points (itx, jty) are denoted gi j. Similarly, the approximate values of the functions s, z, u on
the grid points are denoted si j, zi j, ui j. Furthermore, for any function v ∈ {g, s, z, u}, we denote by v the column vector
of dimension n obtained from the corresponding matrix rearranging the elements vi j by a column-wise vectorization.
The function w(i, j) := ( j − 1)N + i makes a bijective correspondence between the entry vi j and its position in the
vector v. Shortly, [v]w(i, j) = vi j. Given a vector v, let us denote Rv the diagonal matrix with diagonal entries equal to
the elements of v. Furthermore, we also denote v2 the vector of the squared coefficients of v, i.e., [v2]i = ([v]i)2 and
e := (1, 1, . . . , 1)T . The maximum value of the entries of a vector is denoted by ‖v‖∞ := maxi [v]i.

The first and second order differential operators appearing in the functional can be approximated via finite difference-
schemes as follows

∂xvi j :=
vi+1, j − vi, j

tx
= [Dxv]w(i, j)

∂yvi j :=
vi, j+1 − vi, j

ty
= [Dyv]w(i, j)

∂xxvi j :=
vi+1, j − 2vi, j + vi−1, j

t2
x

= [Dxxv]w(i, j)

∂yyvi j :=
vi, j+1 − 2vi, j + vi, j−1

t2
y

= [Dyyv]w(i, j)

∂xyvi j :=
1
ty

(
vi+1, j+1 − vi, j+1

tx
−

vi+1, j − vi, j

tx

)
= [Dxyv]w(i, j)

(7)
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for i = 1, . . . ,N and j = 1, . . . ,M. By assuming zero boundary conditions (v0, j = vN+1, j = vi,0 = vi,M+1 = 0) as in [36],
the above matrices Dx, Dy, Dxx, Dyy are given by

Dx :=
1
tx

IM ⊗ A1
N Dy :=

1
ty

A1
M ⊗ IN

Dxx :=
1
t2
x

IM ⊗ A2
N Dyy :=

1
t2
y

A2
M ⊗ IN

Dxy := DyDx = DxDy

where ⊗ is the Kronecker product. Here IK denotes the identity matrix of dimension K and A1
K , A2

K are square matrices
of order K > 0, representing a forward-scheme approximating first-derivative and a central-scheme approximating
second-derivative respectively2:

A1
K :=


−1 1

−1 1
. . .

. . .
−1 1

−1

 , A2
K :=


−2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 −2

 . (8)

By using the following approximations over each grid point

|∇2vi j|
2 = ([Dxxv]w(i, j))2 + ([Dyyv]w(i, j))2 + 2([Dxyv]w(i, j))2,

|∇vi j|
2 = ([Dxv]w(i, j))2 + ([Dyv]w(i, j))2,

we can approximate the integral over Ω with a simple 2-D composite rectangular rule, obtaining the following discrete
form of the functional (5):

Fε(s, z,u) := txty
{
δ [uT DT

xxRz2 Dxxu + uT DT
yyRz2 Dyyu + 2uT DT

xyRz2 Dxyu] +

+ ξε [uT DT
x Rs2 Dxu + uT DT

y Rs2 Dyu] +

+ (α − β) [ε (sT DT
x Dxs + sT DT

y Dys) +
1
4ε

(s − e)T (s − e)] +

+ β [ε (zT DT
x Dxz + zT DT

y Dyz) +
1
4ε

(z − e)T (z − e)] +

+ µ (u − g)T (u − g)
}
. (9)

Here, with abuse of notation, Rs2 is the diagonal matrix composed by the elements of the vector s2 + oε (instead of s2).
Globally this functional is not convex, but it is quadratic with respect to each block of variables s, z,u. The terms of
Fε containing s or z depend only on u. On the other hand, the terms containing u depend on s and z. Indeed, by fixing
the variable u or the other two variables s and z, we can write

Fε(s, z,u) = txty

{
1
2

(
sT zT

) ( As 0
0 Az

) ( sz
)
−

(
sT zT

) ( bs
bz

)
+ csz

}
Fε(s, z,u) = txty

{
1
2

uT Au u − uT bu + cu

} (10)

2The implementation of homogenoeus Neumann boundary conditions follows straightforwardly by replacing the entries: [A1
K ]K,K = 0 and

[A2
K ]1,1 = [A2

K ]K,K = −1.
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where As = As(u), Az = Az(u), Au = Au(s, z) and bs,bz,bu are given by

As = 2ξεR|∇u|2 + 2ε(α − β)(DT
x Dx + DT

y Dy) +
α − β

2ε
I

bs =
α − β

2ε
e

Az = 2δR|∇2u|2 + 2εβ(DT
x Dx + DT

y Dy) +
β

2ε
I

bz =
β

2ε
e

Au = 2δ(DT
xxRz2 Dxx + DT

yyRz2 Dyy + 2DT
xyRz2 Dxy) + 2ξε(DT

x Rs2 Dx + DT
y Rs2 Dy) + 2µI

bu = 2µg

(11)

with |∇u|2 := (Dxu)2 + (Dyu)2 and |∇2u|2 := (Dxxu)2 + (Dyyu)2 + 2(Dxyu)2. Vectors csz and cu are constant, thus
irrelevant for the minimization. In view of the terms α−β

2ε I, β
2ε I and 2µI, with ε, µ, β, α − β > 0, the matrices As,Az,Au

are symmetric and positive definite. Furthermore, these matrices are very sparse and structured: As and Az are block
tridiagonal matrices where the diagonal blocks are tridiagonal and the off-diagonal blocks are diagonal. Au is a block
five matrix, with at most 13 nonzero entries for each row.

In the following, for notation convenience, a generic point in R3n is represented by either y or (s, z,u). This
makes a simple correspondence of the type: y1 = s, y2 = z and y3 = u. Accordingly, throughout the paper a similar
correspondence is used for denoting operators/vectors related to a specific block of variables. For example: As = A1,
Az = A2, Au = A3, and bs = b1, bz = b2, bu = b3 etc. Furthermore, we denote the gradient of Fε with respect to the
generic block of variables yi, computed at y, by ∇iFε(y) = Aiyi − bi.

2.2. Minimization method

We address here the minimization of the function Fε(s, z,u). Firstly we can observe that the objective function is
continuously differentiable, and in view of the positive definiteness of matrices Ai, i = 1, 2, 3, it is strictly convex with
respect to each block component yi, when the others are left fixed. Let us prove that Fε is also coercive.

Lemma 1. The function Fε(s, z,u) is coercive in R3n.

Proof. Given a sequence yk = (sk, zk,uk) ⊂ R3n such that limk→∞ ‖yk‖ = +∞ the lemma is proved if we show that
limk→∞ Fε(yk) = +∞. The hypothesis on yk implies that there exists a coordinate index j ∈ {1, 2, . . . , 3n} such that
limk→∞ |yk

j | = +∞. If 1 ≤ j ≤ n, then j corresponds to an index i in the s block and we have that limk→∞ |sk
i | = +∞.

In particular limk→∞(sk
i − 1)2 = +∞ and since (sk

i − 1)2 ≤ (sk − e)T (sk − e) we also have that limk→∞ Fε(yk) = +∞. A
similar argument works in the case of n+1 ≤ j ≤ 2n, where j corresponds to an index in the z block. If 2n+1 ≤ j ≤ 3n
then j corresponds to an index i in the u block. From limk→∞ |uk

i | = +∞ we have that limk→∞(uk
i − gi)2 = +∞ and,

since (uk
i − gi)2 ≤ (uk − g)T (uk − g), then we have again limk→∞ Fε(yk) = +∞.

By using a truncation argument we have that the functions s and z that minimize the objective functional Fε belong to
a specific compact subset of R3n. In fact, given τ(v) := 0 ∨ v ∧ 1, i.e., the function that truncates v at 0 and 1, one can
see that for any triplet (s, z,u) ∈ R3n

Fε(s, z,u) ≥ Fε(τ(s), τ(z),u) (12)

holds (in fact, the truncation of s and z does not increase their gradients). It follows that for a minimizer (s, z,u) the
functions s, z ∈ [0, 1]n. A similar argument is used for the Mumford-Shah functional in [11] to prove that the optimal
u is such that ‖u‖∞ ≤ ‖g‖∞ (maximum principle). Unfortunately, the Hessian component of the Blake-Zisserman
functional does not allow us to exploit the maximum principle and an explicit bound for the function u cannot be
calculated, [28].
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The structure of the function Fε(s, z,u) justifies the use of a block decomposition method, such as the block
non-linear Gauss-Seidel (GS) method. Starting from (s0, z0,u0), in view of (10), the method has the following form:

sk+1 = arg mins Fε(s, zk,uk)

zk+1 = arg minz Fε(sk+1, z,uk)

uk+1 = arg minu Fε(sk+1, zk+1,u)

. (13)

Because of the the block diagonal structure of the matrix related to the quadratic functional obtained by fixing u in the
first subproblem in (10), sk+1 and zk+1 can be obtained by further subdividing this subproblem into two independent
tasks.
Theorem 6.2 in [39] assures that the algorithm generates a sequence {sk, zk,uk} such that every limit point is a station-
ary point of Fε . Because of coercivity, the level sets Lα = {(s, z,u) : Fε(s, z,u) ≤ α} are compact for every α > 0.
Since in particular Lα0 is compact, where α0 = Fε(s0, z0,u0), the theorem also guarantees that ∇Fε(sk, zk,uk) → 0 as
k → ∞ and there exists at least a limit point that is a stationary point of Fε .
Nevertheless, any step of the non-linear Gauss-Seidel method requires the solution of three large and sparse systems.
Although such systems can be efficiently solved by the Preconditioned Conjugate Gradient (PCG) algorithm, the
whole method could be too expensive, above all for large images.
Therefore, we propose to solve our minimization problem with a block coordinate descent algorithm (BCDA),
based on the line search technique described in [39]. The basic idea of the method is to cyclically determine for
each block variable a descent direction di by few iterations of an iterative solver; then by an Armijo–type procedure a
suitable step size is devised to assure a sufficient decrease of the objective function along this direction with respect
to the i–th block variable, when the remaining variables are fixed.
In view of the special structure of Fε(s, z,u), for each subproblem in (10) we can cyclically obtain a descent direction
by few iterations of the PCG method applied to the linear system Ak

i di = bi −Ak
i yk

i . In the first subproblem, dk
s and dk

z
can be independently obtained. Furthermore, in view of the quadratic structure of the objective function with respect to
each block of variables when the others are fixed, the step–lengths along the computed descent directions can be deter-
mined without having to use an Armijo–type procedure. Indeed, it is well known that, for a symmetric positive definite
quadratic function, a sufficient decrease is assured when the step size αk

i is chosen as γi
−(Ak

i yk
i −bi)T dk

i

dk
i

T Ak
i dk

i

= γi
−∇iFε (yk)T dk

i

dk
i

T Ak
i dk

i

,

with 0 < γi < 2; in particular, for γi = 1, we obtain the exact one-dimensional minimizer of the quadratic function
along the direction dk

i . As consequence, we can devise a specialized version of the block-coordinate descent algorithm
for Fε(s, z,u); such scheme is outlined in Algorithm 1.

2.2.1. Gradient related search directions
In order to obtain convergence results for BCDA, the vectors dk

i , i = 1, 2, 3, have to be chosen so that they are
gradient related search directions. Equivalently, they have to satisfy the following assumption:

(a) dk
i = 0 if and only if ∇iFε(yk) = 0,

(b) there exists a forcing function σi : R+ → R+ such that:

∇iFε(yk)T dk
i

‖dk
i ‖

≤ −σi(‖∇iFε(yk)‖) (14)

for all k satisfying ∇iFε(yk) , 0.

In order to determine a gradient related search direction when Ak
i yk

i − bi , 0, we can execute several iterations of
PCG method for the symmetric positive linear system Ak

i di = bi − Ak
i yk

i by stopping the algorithm when the residual
r` = bi − Ak

i yk
i − Ak

i d`i of the system at the ¯̀-th iteration satisfies the rule

‖r`‖ ≤ ηi‖Ak
i yk

i − bi‖ ηi ≤
c√

K((Ak
i )−1)

, (15)
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Algorithm 1 BCDA

Step 0: Given s0, z0, u0, ρsz > 0, ρu > 0, γs ∈ (0, 2), γz ∈ (0, 2), γu ∈ (0, 2);

Step 1: k = 0;

Step 2: Inexact minimization with respect to s and z:

• compute the search directions dk
s and dk

z ;

• compute αk
s = γs

−(Ak
ssk−bs)T dk

s

dk
s

T Ak
sdk

s
, αk

z = γz
−(Ak

z zk−bz)T dk
z

dk
z

T Ak
z dk

z

• update sk+1 = sk + αk
sdk

s; zk+1 = zk + αk
zdk

z .

Step 3: Inexact minimization with respect to u:

• compute the search directions dk
u;

• compute αk
u = γu

−(Ak
uuk−bu)T dk

u

dk
u

T Ak
udk

u

• update uk+1 = uk + αk
udk

u.

Step 4: Set k = k + 1 and go to Step 2;

where K((Ak
i )−1) is the spectral condition number of (Ak

i )−1 and c < 1. We observe that K((Ak
i )−1) = K(Ak

i ) is bounded
by a positive constant L in Lα0 . Then, we set d ¯̀

i = dk
i . We can prove that dk

i satisfies the assumption (14). Indeed,
recalling that ‖ · ‖A−1 denotes the A−1–norm (that is ‖x‖A−1 =

√
xT A−1x), for d ¯̀

i = dk
i we have

∇iFε(yk)T dk
i

‖dk
i ‖

≤
(Ak

i yk
i − bi)T (Ak

i )−1Ak
i d ¯̀

i

‖d ¯̀
i ‖

+

1

2‖d ¯̀
i ‖

(‖r ¯̀
+ ∇iFε(yk)‖2(Ak

i )−1 + ‖∇iFε(yk)‖2(Ak
i )−1 − ‖∇iFε(yk)‖2(Ak

i )−1 )

=
1

2‖d ¯̀
i ‖

(
‖r ¯̀
‖2(Ak

i )−1 − ‖∇iFε(yk)‖2(Ak
i )−1

)
≤

1

2‖d ¯̀
i ‖

(
λmax((Ak

i )−1)‖r ¯̀
‖2 − λmin((Ak

i )−1)‖∇iFε(yk)‖2
)

(16)

≤
1

2‖d ¯̀
i ‖

(
λmax((Ak

i )−1)η2
i − λmin((Ak

i )−1)
)
‖∇iFε(yk)‖2 (17)

where (16) follows from the well-known inequalities

λmin((Ak
i )−1)‖x‖2 ≤ xT (Ak

i )−1xT ≤ λmax((Ak
i )−1)‖x‖2

for any x, and the inequality (17) follows from (15). Furthermore, the bound on ηi implies (λmax((Ak
i )−1)η2

i −

λmin((Ak
i )−1)) < 0; then, since d ¯̀

i = (Ak
i )−1(−∇iFε(yk) − r ¯̀), we have

‖d ¯̀
i ‖ ≤ ‖(A

k
i )−1‖(‖∇iFε(yk)‖ + ‖r ¯̀

‖)

≤ λmax((Ak
i )−1)(1 + ηi)‖∇iFε(yk)‖

9



Using this inequality in (17), we can conclude that

∇iFε(yk)T dk
i

‖dk
i ‖

≤
1

2(1 + ηi)

η2
i −

1
K((Ak

i )−1)

 ‖∇iFε(yk)‖

≤
c2 − 1

2L
‖∇iFε(yk)‖, (18)

where c2 − 1 < 0. Consequently, in the level set Lα0 , the search directions dk
s, dk

z and dk
u generated by a PCG method

with stopping rule (15) are gradient related search directions. Therefore, by Theorem 7.1 in [39], we can affirm that
for BCDA the same convergence results hold as for block non–linear Gauss Seidel method, that is ∇Fε(uk, zk, zk)→ 0
as k → ∞ and there exists at least a limit point in Lα0 that is a stationary point of Fε .

2.2.2. Algorithm parameters and preconditioning
We observe that from the practical point of view the computation of the condition number of (Ak

i )−1 (which equals
that of Ak

i ), can be avoided. Indeed, in view of the condition (15) on ηi, it is sufficient to have an upper bound for
K(Ak

i ). Then, using the inequalities between the matrix norms, we have λmax(Ak
i ) ≤ ‖Ak

i ‖∞. Since As and Az are
strictly diagonally dominant, the first Gerschgorin’s theorem [40] enables us to determine as lower bound for the
minimum eigenvalue the intersection between the union of the Gerschgorin circles and the x-axis of R2, given by
λ̃k

i = mint((Ak
i )tt −

∑
v,t |(Ak

i )vt |) for i = 1, 2. For the matrix A3, a lower bound for the minimum eigenvalue is the value
λ̃k

3 = 2µ. Therefore, we have

K(Ak
i ) =

λmax(Ak
i )

λmin(Ak
i )
≤
‖Ak

i ‖∞

λ̃k
i

, (19)

consequently, we can set

ηi =

√
λ̃k

i

‖Ak
i ‖∞

. (20)

From the computational point of view, the quadratic structure of Fε restricted to any block variable yi implies that
the condition related to the Armijo rule that has to be verified to accept the step size αk

i = max j≥0{δ
j
i ∆

k
i } can be

αk
i ≤ 2(γi − 1)

(Ak
i yk

i − bi)T dk
i

(dk
i )T Ak

i dk
i

. (21)

Furthermore, since As and Az are block tridiagonal matrices, an inexpensive diagonal preconditioner enable us to
satisfy the stopping rule (15) with a very few iterations, as shown by numerical experiments in the Section 3.
For the linear system related to matrix Au we can use a diagonal preconditioner or a block diagonal preconditioner.
In this last case, each diagonal block is a tridiagonal matrix that can be easily factorized by the Cholesky algorithm.
Although the factorization can be calculated in advance, PCG requires the factorization of the preconditioner and,
at each iteration, the solution of bidiagonal lower and upper systems; thus PCG coupled with block preconditioner
becomes effective with respect to the version with diagonal preconditioner for large order of the system and only
when high accuracy is required. Furthermore, unless for the first outer iteration, we use as starting vector of the PCG
algorithm in Step 2 and 3 of BCDA the direction computed at the previous outer iteration. For the first iteration, the
starting vector is the null vector.
In the numerical experiments, standard values equal to 1 are set for γs and γz; we set γu = 1.5, since for this value we
obtain a slightly better performance.

2.2.3. Initialization and stopping criteria
The objective functional to minimize is non-convex; thus, the significance of the solution returned by the iterative

method (a stationary point) strongly depends on the choice of the first iterates. Using prior knowledge on the properties
of the theoretical solution, an effective choice of the initial values can be made [36]. Being the functions s, z ≡ 1
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almost everywhere over Ω (in the limit case), we set the corresponding variables to s0, z0 ≡ e. Since the function u is
an approximation of the input image g, we assume that an energetically convenient initialization of the corresponding
variable is u0 = g.

In the experiments described in the next section, the algorithms are stopped at the iteration k such that the relative
variation of the energy satisfies the condition∣∣∣∣∣∣Fε(uk, sk, zk) − Fε(uk−1, sk−1, zk−1)

Fε(uk, sk, zk)

∣∣∣∣∣∣ < TOLF , (22)

where TOLF is a fixed tolerance.

3. Numerical results

In this section we present the results of an extensive numerical experimentation aimed at assessing different prop-
erties of the proposed block-coordinate descent method applied to (9). In Section 3.1 the proposed BCDA is compared
with the GS in order to evaluate its performance both in terms of efficiency and accuracy. In Section 3.2, by focus-
ing the attention on the noise reduction properties of the model, we compare the performance of the BCDA when
a Point-Diagonal and a Block-Diagonal preconditioner is used for the solution of the PCG related to the linear sys-
tems involving Au. In Section 3.3 we make a discussion on the choice of the Γ-convergence parameter ε, which may
critically affect the quality of the detection of first and second order discontinuities.

Very different datasets are considered in the tests, including both real and synthetic images and also Digital Surface
Models (DSMs) obtained from remote sensing LiDAR (Light Detection and Ranging) data [41]. DSMs are obtained
from airborne LiDAR point clouds by interpolation over a regular planimetric grid. The value of the DSM on each
pixel (grid point) corresponds to the height of the object hit by the laser pulse. In particular DSMs are very attractive
as they represent the real geometry of the objects instead of the light geometry provided by gray-scale images.

All tests are performed using MATLAB R© on a standard workstation. Hardware is Intel(R) Core(TM) i5-4750 CPU
@ 3.20 GHz, 8.00 GB Ram. For all numerical tests that follow, some common parameters to control convergence
of outer/inner iterations are used. The algorithms are always stopped at the iteration k such that the corresponding
relative variation of the energy (22) is less than TOLF = 10−3. A maximum number of outer iterations is also fixed
as stopping criterion to 30. It is worth noting that in all computations this bound has never been reached. Regarding
the solution of internal PCGs, we fixed a maximum number of iterations to 1000. It has been observed in a very large
number of tests that, the linear systems involving As,Az are solved within an inner tolerance TOLPCG in no more
than 3 iterations in the case of GS, and in only 1 iteration in the case of BCDA. Other parameters and tolerances are
explicitly specified in the tests.

3.1. Comparison of GS and BCDA performance

In this section we show how the proposed BCDA produces accurate solutions by also significantly reducing
computational time if compared with a GS method. In order to compare the effectiveness of the two methods, we
compute an ideal solution s∗, z∗,u∗ by performing a lot of iterations of the GS method, i.e., by running GS until it
reaches stagnation since all PCGs (with a very strong relative tolerance TOLPCG = 10−10) do not make any progress.
For the inner PCGs in the GS method, a strong relative tolerance TOLPCG = 10−8 is required; smaller tolerances
have never resulted in lower minimizers. Tolerances for the solution of inner iterations of the PCGs in the BCDA
are theoretically defined by (15) and (20). Furthermore, we propose also an hybrid version of the BCDA, to which
we will refer to as BCDAc, where the number of iterations for solving the inner PCGs is capped at 10 (in view of
a previous remark this affects only the solution of the system involving Au). The main idea behind this choice it to
show that actually just few steps of the inner solvers are needed to reach satisfying results at lower computational cost,
even though a small (negligible) amount of accuracy is payed. Since the performance of the method when a block-
diagonal preconditioner is used is analyzed in detail in Section 3.2, in all tests conducted in this section a diagonal
preconditioner is used for the PCGs.

We consider as test problems the four datasets represented in Figure 3. The first image is a 600 × 600 portion of
the oil painting “Girl with a Pearl Earring” by Johannes van der Meer. We refer this dataset to as pearl. Then, two
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(a) pearl (600 × 600) (b) aerial (512 × 512) (c) airport (1024 × 1024)

(d) barracks (600 × 600) (e) barracks (3D rendering)

Figure 3: Datasets of the experiment including three gray-scale images and a digital surface model obtained from airborne LiDAR points acquired
over Trento, Italy.

gray-scale images3 are considered. The first image is called aerial and it has size of 512 × 512 pixels. The second
image is called airport and it has size of 1024 × 1024 pixels. The last dataset is a subset of a DSM of Trento4, in
Trentino Alto-Adige, Italy. The considered scene presents some old barracks and surrounding area. The size of the
grid is 600 × 600, spatial resolution is 1mt. We refer this dataset to as barracks. In Figure 3e a 3D rendering of the
surface model is shown. Functional parameters for the minimization on these datasets are set as follows:

• pearl: ε = 0.01, δ = 3, α = 2, β = 1, µ = 0.07, t = 1;

• aerial: ε = 0.01, δ = 1, α = 2, β = 1, µ = 0.05, t = 1;

• airport: ε = 0.01, δ = 1, α = 2, β = 1, µ = 0.05, t = 1;

• barracks: ε = 0.01, δ = 30, α = 2, β = 1, µ = 1, t = 1.

In Table 1 we report the total number of outer (k) and inner (totiter) iterations of GS, BCDA and BCDAc together
with the total time in seconds (the mean of ten runs) required to compute an approximate solution, with TOLF = 10−3

in (22). Computational performance of GS, BCDA, and BCDAc is better illustrated in Figure 4, where the value of
the objective function at each outer iteration is plotted against the cumulative execution time.

The solutions obtained with all the proposed methods are very similar each other, in such a way that they cannot be
distinguished only visually. The accuracy (and the similarity) of the solutions obtained with GS, BCDA and BCDAc

3Images are downloadable at http://sipi.usc.edu/database/database.php?volume=misc#top
4DSMs are downloadable at http://www.territorio.provincia.tn.it/portal/server.pt/community/lidar/847/lidar/23954
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dataset method k totiter (s-z-u) time
pearl
600 × 600

GS 18 43-49-6435 190.3
BCDA 14 14-14-690 38.9
BCDAc 14 14-14-106 25.0

aerial
512 × 512

GS 19 49-55-4592 105.9
BCDA 15 15-15-492 25.8
BCDAc 11 11-11-62 14.4

airport
1024 × 1024

GS 20 51-55-4937 460.1
BCDA 16 16-16-493 107.9
BCDAc 12 12-12-72 62.1

barracks
600 × 600

GS 14 31-39-3906 119.1
BCDA 12 12-12-463 29.3
BCDAc 10 10-10-69 17.3

Table 1: Outer/inner iterations and execution time (seconds) observed in the run of the proposed algorithms.

(a) pearl (b) aerial

(c) airport (d) barracks

Figure 4: Energy-versus-time at every outer iteration for all three datasets with GS, BCDA and BCDAc. Algorithms are stopped by criterion (22)
with tolerance TOLF = 10−3.

can be measured in terms of their distance to the ideal solutions. To this aim we defined a normalized distance
based on the L1 norm as follows. In view of (12), the solutions of the algorithms are such that s, z ∈ [0, 1]n. Given
H := [0, h]n, with h > 0, we easily have that

d(h) := max
x,y∈H

‖x − y‖1 = hn. (23)

Therefore, we can define a normalized distance function dh : H × H → [0, 1] by setting dh(x, y) := 1
d(h) ‖x − y‖1. As

a consequence, the maximum possible distance in H := [0, 1]n is 1, and the value 100 · dh(x, y) can be interpreted
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dataset method d1(s, s∗) d1(z, z∗) dG(u,u∗)

pearl
GS 3.40e − 03 6.45e − 03 4.02e − 04
BCDA 4.00e − 03 7.59e − 03 4.93e − 04
BCDAc 1.38e − 02 1.84e − 02 4.78e − 03

aerial
GS 9.76e − 03 1.27e − 02 1.13e − 03
BCDA 9.44e − 03 1.22e − 02 1.14e − 03
BCDAc 3.33e − 02 3.18e − 02 8.35e − 03

airport
GS 5.41e − 03 7.46e − 03 6.59e − 04
BCDA 5.74e − 03 7.80e − 03 7.43e − 04
BCDAc 1.86e − 02 1.83e − 02 6.88e − 03

barracks
GS 2.47e − 03 1.65e − 02 3.57e − 05
BCDA 2.47e − 03 1.62e − 02 3.63e − 05
BCDAc 6.48e − 03 2.62e − 02 1.80e − 04

Table 2: Accuracy in the approximations given by the GS, BCDA and BCDAc with respect to the ideal solution for the considered datasets.

as the percentage of image content which is changed between x and y. Thus, the distances for the functions s and
z are given in terms of d1. As already mentioned in Section 2.2, it is not possible to define an explicit bound for
the values of the function u. Altough our method produces a sequence of iterates (sk, zk,uk) ∈ Lα0 , the inequality
Fε(sk, zk,uk) ≤ Fε(e, e, g) does not necessarily imply that ‖uk‖∞ ≤ ‖g‖∞. However, in all numerical experiments
presented in this paper (and in many other experiments performed by the authors) it is observed that the optimal u
satisfies ‖uk‖∞ ≤ ‖g‖∞, thus it is meaningful to compute the distances of the solutions u by means of dG, where
G := ‖g‖∞.

The distances between the solutions of GS, BCDA, BCDAc with respect to the ideal solutions are given in Table
2. By analyzing the results we see that the BCDA algorithm, if compared to GS, significantly decreases the time of
computation of approximately 75% and returns solutions that do not differ more than 1% with respect to the ideal
solution. BCDA and GS always resulted in the same accuracy. In the case of BCDAc, the time of computation
further decreases of 10% and the difference of the solutions with respect to the ideal solution are never greater than
1%. Notice that the obtained solutions have a lower accuracy as the normalized distances are about 10 times those
obtained by the other two methods. In Figure 5, for each dataset we plot the smooth approximation u, the edge-map s
and the edge/crease- map z obtained by the BCDA.

Second-order segmentation provides a piecewise linear approximation of the input image. Therefore, if compared
to first order models, it avoids the problem of over-segmentation and the real geometry of objects is followed properly.
For instance, in the pearl image both the noise and the craquelure are removed while the geometry of shadows is
preserved. By taking a look at the particular showed in Figure 6, we see that around the nostril the variation of grey
level in the shadowed area is over-segmented by the s function (shadow-like trait in the s map) but it is correctly
outlined by the z function. In fact, boundaries of shadows are characterized by a transient zone of luminance variation
which is a ramp and not as sharp as a jump. The aerial image is smoothed out and the contrast between the ground and
human-made objects is more evident in the segmented image. A similar behavior is observed for airport, where the
smoothing removes the noise but is able to keep the geometry of cars in the parking area. By looking at the particular
in Figure 7 we see that almost every trait in s seems to be doubled in z. Again, this happens because in luminance
images the transition of intensity between two areas with different values is usually not purely a jump. The doubled
trait is due to the fact that the z function is able to detect both sides of the transition ramp.

In the barracks dataset, the capability of the model of detecting second-order edge boundaries is clear. In the
surface models the geometry is real and the structure of many man-made objects is linear (buildings for instance). By
looking at the particulars in Figure 8 we see that the noise is removed and the edges that define the roof planes are
preserved and correctly detected by the z function. Notice also the substantial difference between the functions s and
z. This difference is not so evident in the images as variations of gradient of luminance are usually as not as sharp as
variations of gradient of height in surface models of urban areas. This means that discontinuities that are purely of
second-order are difficult to find in images, but not in DSMs. Lastly, we remark here that in a discrete setting a jump
is also a crease. In view of the second-order differential operators used in (8) a jump is traced along 1-pixel wide
curve in s, whereas it is traced along a 2-pixel wide curve by z (cfr. Section 3.3).
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Figure 5: Results of the BCDA method for the considered datasets. First column is the smooth approximation u, second column is the edge-map s
and third column is the edge/crease-map z.
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g u

s z

Figure 6: Particulars of the segmentation for the dataset pearl.

16



g u

s z

Figure 7: Particulars of the segmentation for the dataset airport.
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g

u

s z

Figure 8: Particulars of the segmentation for the dataset barracks. Above, there are the 3D renderings of the surface model g and its smooth
approximation u. In the bottom, there are the edge map s and the edge+crease map z.
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3.2. Noise reduction and effect of Block-Preconditioner for the BCDA

The Step 3 in Algorithm 1 attempts to minimize the objective function Fε(s, z,u) with respect to the variable block
u. The performance of this step depends on both the size and the noise level of the image. The inverse of the parameter
µ of the objective function represents the scale at which variations in g are considered as noise. At each outer iteration
k, variations that are in order to be smoothed out are signaled by the points where sk, zk are close to 1. Smoothing
takes place when the system involving Au is solved and returns uk. The computational burden related to this step is
determined by the scale of the noise in the image: the greater the variations are related to the noise, the more effort is
required to smooth out such variations. Assuming that interesting features (edge-boundaries) and noise are at different
scales in the image, the parameter µ must be chosen at an intermediate level in such a way that the former ones are
preserved by the model whereas the latter ones are smoothed out. However, from (11) one can see that small values
of µ reduce the definite positiveness of matrix Au. Thus, µ should be optimal, i.e., as greater as possible but not such
that noise is preserved.

The first test we present concerns with the relationship between the choice of µ, the noise reduction and the
performance of the minimization performed by the proposed BCDA. The basic element of the datasets considered
in the following is a synthetic 100 × 100 grey-scale image presenting geometrical features of first and second order
consisting in a truncated pyramid. Images of greater dimensions are obtained by assembling several basic elements
of the same type. Test images are corrupted by artificial additive Gaussian noise with 0 mean and varying standard
deviation σ (top-left image in Figure 9 represents one pyramidal element, in the same row other elements with added
noise). Along the experiments, functional parameters except µ are fixed to α = 2, β = 1, δ = 30, ε = 0.01, t = 1.
After running the algorithm several times, we observed that that for values µ < 0.05 the smoothing also affected the
interesting features of the image (pyramid edges), whereas for µ > 0.15 no smoothing at all was observed. Therefore,
the results given in the following relate to 0.05 ≤ µ ≤ 0.15. Performance of the BCDA with respect to noise and µ is
evaluated in two experiments.

• In the first experiment the minimization is performed on one pyramidal element for different levels of noise σ =

0, 0.5, 1, 2 (σ = 0 means that no noise is added) and for µ = 0.15. In Figure 9, the input image g, the difference
between g and its smooth approximation u, the edge-detection function s and the edge/crease-detection function
z are showed. Notice from the plots of g − u how the noise is uniformly detected and removed by the model
in all cases. The detection of first and second order features of the image is sufficiently accurate, and only for
σ = 2 the scale of the noise slightly affects the detection of pyramid edges. Let us denote gσ and uσ the input
image and its smooth approximation for different values of σ. Quantitatively, the capability of the model of
removing the noise is given in terms of the distance between the smooth approximations uσ and the original
noise-free image g0. We obtained dG(g0,u0) = 2.90e − 03, dG(g0,u0.5) = 2.81e − 03, dG(g0,u1) = 2.88e − 03,
dG(g0,u2) = 3.13e − 03, where we used G = ‖g0‖∞.

• In the second experiment, the effect of varying µ on the performance of the minimization method is tested
with respect to different levels of noise. Test images have size of 1000 × 1000 pixels. Times of computation
and average number of iterations of the PCG related to u are given in Figure 10. As we can see, for a fixed
value of µ the time required for smoothing the data increases with σ. Moreover, since the average number of
PCG iterations for u does not significantly change with σ, we conclude that more outer iterations are needed to
smooth out the noise. Notice also that, as expected, increasing values of µ resulted in less computational time
due to the fact that the definite positiveness of matrix Au increases.

As we have seen in the previous experiments, the noise removal task can be very expensive. Moreover, the
execution time also depends on the size of the input image. The second test we present aims at showing that the
general performance of BCDA can be enhanced if a block-diagonal preconditioner, instead of a point–diagonal one, is
used. In the experiments, the algorithm is run on synthetic images composed by several pyramidal elements corrupted
with noise with different variances. Analyzed images have a number of pixels ranging from 2 · 105 to 4 · 106. From
Figure 11 we see that the execution time linearly increases with the size of the image. Moreover, the use of a block-
preconditioner reduces the time of approximately 14% regardless the noise variance. It is also confirmed from the
graphs of total and average number of PGC iterations that, for increasing sizes of the image the number of iterations
does not significantly change. The computational burden is instead in the time for completing each iteration.
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σ = 0 σ = 0.5 σ = 1.0 σ = 2.0

Figure 9: Smoothing on synthetic images with different noise levels, image size is 100 × 100. Row 1: input noisy images g. Row 2: difference
g − u. Row 3: edge-detection functions s. Row 4: edge/crease-detection functions z.

20



(a) (b)

(c)

Figure 10: Performance details of BCDA by varying µ and for different variances of the noise. Test images are 1000× 1000 pixels compositions of
the pyramidal elements showed in Figure 9. For each value of µ we plot (a) the execution time, (b) the total number, and (c) the average number of
iterations of the PCG solver related to u.

(a) (b)

(c)

Figure 11: Performance of BCDA with Diagonal (D) and Block-Diagonal (BD) preconditioners for the PCG solver related to u, versus the size of
g. We plot (a) the execution time, (b) the total number, and (c) the average number of iterations of the PCG solver related to u.
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(a) (b)

Figure 12: Test images. (a) Image with jump of variable height h. (b) Image with a crease of variable slope θ. The slices of functions s, z plotted in
Figures 13 and 14 are located in correspondence of the red dashed lines.

3.3. Parameter ε, grid resolution and sensitivity of the discontinuity functions
The explicit construction of a recovery sequence in the Γ-convergence proof of [36] allows for having an essential

prediction of geometrical properties of the discontinuity functions sε , zε approximating the discontinuity sets S u, S ∇u,
for ε > 0 (see Figure 2 and related discussion). The geometrical behavior of sε , zε is theoretically determined by the
convergence parameter ε and geometrical features of the input image g. However, no analytical expression of the
functions in proximity of the discontinuities is given. These facts give rise to some numerical problems that must
be taken into account when the functional Fε is minimized and the numerical approximations of sε , zε (given by s, z,
respectively) are computed. On the one hand, the discrete sampling of the domain Ω with steps tx, ty must resolve
the tubular neighborhoods of the discontinuity sets, which shrink as ε → 0. On the other hand, increasing values of
|∇g| and |∇2g| will force sharper transitions of the discontinuity functions from 1 to 0, whereas decreasing values will
result in softer transitions, therefore limiting the capability of detecting edge boundaries.
In order to have a clear understanding of the geometrical behavior of functions s, z, in the following the sensitivity of
the model with respect to the parameter ε and the variations of |∇g| and |∇2g| is tested. In the tests the two synthetic
images showed in Figure 12 are used. The first image contains a uniform jump (discontinuity) of grey value with
variable height h. The second image contains a crease (gradient discontinuity) between a flat area and a uniform slope
with variable angle θ.

Let us discuss the results obtained on the test image with a jump (Figure 12a), firstly by varying parameter ε, then
by varying h. In the first experiment all the functional and discretization parameters, except ε, are fixed to δ = 30,
α = 2, β = 1, µ = 1, tx = ty = 1, the step height is h = 90. A sufficiently wide range of behaviors of the discontinuity
functions can be depicted by minimizing the functional Fε for values of ε ranging from 10−5 to 5. In Figures 13a and
13b the plots of slices of the minimizing functions s and z in correspondence of the jump, are given. As we can see,
the width of the tubular neighborhoods of the discontinuity sets increases with ε. For ε = 10−5 the grid is too coarse
for detecting the transition phase of both s and z, which are uniformly 1. The optimal choice of the Γ-convergence
parameter is ε = 10−2, as it corresponds to a detection of the jump which is 1 grid-point wide in the case of s, and two
grid-point wide in case of z (detection is optimal in view of the differential discrete operators described in Section 2.1).
For greater values of ε the detection of the jump is increasingly over-estimated. In particular, notice the difference in
the rate at which s and z become flat in the neighbors of the jump.
In the second experiment, the same parameters as before are used and ε is fixed at the optimal value ε = 0.01. Slices
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Figure 13: Slices of functions s and z obtained by minimizing Fε in the case of test image with a jump (Figure 12a) for different values of ε (a,b)
and h (c,d).

of discontinuity functions are plotted in Figures 13c and 13d for values of h ranging from 1 to 90. In the case of
h = 90 the gradient ∇g is very high, therefore functions s and z are forced to inhibit the costly gradient contribution to
the energy by taking the 0 value in correspondence of the jump. By decreasing h, the discontinuity functions become
less sensitive to the jump and their values approach 1 gradually. In the limit case, h = 1, the step is not detected at
all. Since here we are studying the behavior of minimizers as ∇g changes, we have to remark that a similar behavior
is observed if h is fixed and the discretization parameters tx and ty are changed; this corresponds to a re-scaling of the
image that only changes derivatives.

Now, we present the results obtained on the test image with a gradient discontinuity (Figure 12b), again by varying
parameter ε, and then by varying the inclination angle θ. Functional parameters are the same as in the previous tests,
expert that δ = 300 (crease detection is enforced).
In the first experiment the range of values of ε is the same as in the previous one, and tan(θ) = 1 is fixed. In Figures
14a and 14b the plots of slices of the minimizing functions s and z in correspondence of the crease, are given. For
ε > 10−2 the ramp is over-segmented by s and z. In particular, the larger is ε, the softer is the transition of z from 1 to
0. The value ε = 10−2 is again optimal as s is uniformly 1 (no over-segmentation) and the crease is correctly detected
with sharp variation of z from 1 to 0. Again, for smaller values of ε the tubular neighborhood of the discontinuity of
the gradient is too thin for being resolved by the grid.
In the second experiment we tested the sensitivity of the discontinuity functions with respect to the slope of the ramp.
Parameters are the same as in the previous experiment. Results are are plotted in Figures 14c and 14d for values of
tan(θ) ranging from 0.2 to 5. The steepest is the ramp, the better is the detection of the gradient discontinuity given
by z. Notice that for tan(θ) = 5, the function s tends to over-segment the ramp. This fact can be explained by noticing
that for such θ, the difference of grey value from one pixel to an adjacent one in the ramp is in the order of a detectable
jump. Since tx = 1, the jump in this case is 5. Compare the value of function s with the value of s in Figure 13c
corresponding to a jump of height 6: they are both close to 0.8. As a last remark we point out that, as in the previous
example, a change in the step widths tx, ty has the only obvious effect of re-scaling the derivatives in the image, thus
the behavior of s and z is similar to the one presented here with variable θ.

These tests described the relationship between the geometry of the discontinuity functions returned by the mini-
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Figure 14: Slices of functions s and z obtained by minimizing Fε in the case of test image with a gradient discontinuity (Figure 12b) for different
values of ε (a,b) and tan(θ) (c,d).

mization of Fε , the geometry of the image g and the Γ-convergence parameter ε. By increasing the parameter ε the
width of the tubular neighborhood of the discontinuity sets increases, until reaching a full over-segmentation of the
image. Conversely, for small values of ε, the tubular neighborhood is narrower and narrower, until it is not resolved
by the grid. A correct value of the Γ-convergence parameter should be chosen accordingly. The parameters that af-
fect gradient and Hessian are the height of the jumps, crease angles, and also the grid steps tx, ty. By varying such
quantities the width of the tubular neighborhoods does not change. However, functions s and z are sensitive to their
variations and they approach 0 and 1 at different rates. We conclude that the width of the tubular neighborhood of the
discontinuity sets depends only on ε, whereas other geometrical properties of the image affect the rate at witch these
functions approach 0 and 1.

4. Conclusions and future work

In this work we proposed an efficient block-coordinate descent method for the numerical minimization of a varia-
tional approximation of the Blake-Zisserman functional given by Ambrosio, Faina and March. The Blake-Zisserman
variational model for segmentation is a second-order model based on free discontinuities and free gradient discon-
tinuities that is able to both detect first and second order edge-boundaries in images and produce a piecewise linear
approximation of the input image. Therefore, the model presents several advantages if compared with other methods
for segmentation. The proposed algorithm exploits the structure of the minimization problem, allowing the segmen-
tation of large images, with a satisfying performance in terms of accuracy and computational time. In particular, it
outperforms a standard Gauss-Seidel of 75%. Moreover, the use of a block-diagonal preconditioner always increases
performance of about 14%. Numerical experiments presented in the paper involve very different types of datasets.
We consider also the segmentation of Digital Surface Models (DSMs), showing that the application of the Blake-
Zisserman functional allows to reconstruct, and locate the boundary, of planar objects. In the experimental part we
also focused the attention on the geometrical parameter of the functional related to noise reduction and the behaviour
of the discontinuity functions with respect to the Γ-convergence parameter ε and geometrical properties of the input
image.
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Preliminary tests showed that the proposed method can be combined with a domain decomposition technique, enabling
the segmentation of huge images by a tiling strategy. Future work will concern the deepening of this attractive feature
in the framework of the multiprocessing computing with the aim to design a code for modern parallel architectures.
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