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Abstract—Compact multi-sensor platforms are portable and 
thus desirable for robotics and personal-assistance tasks. How- 
ever, compared to physically distributed sensors, the size of these 
platforms makes person tracking more difficult. To address this 
challenge, we propose a novel 3D audio-visual people tracker 
that exploits visual observations (object detections) to guide the 
acoustic processing by constraining the acoustic likelihood on the 
horizontal plane defined by the predicted height of a speaker. This 
solution allows the tracker to estimate, with a small microphone 
array, the distance of a sound. Moreover, we apply a color- 
based visual likelihood on the image plane to compensate for 
misdetections. Finally, we use a 3D particle filter and greedy 
data association to combine visual observations, color-based and 
acoustic likelihoods to track the position of multiple simultaneous 
speakers. We compare the proposed multimodal 3D tracker 
against two state-of-the-art methods on the AV16.3 dataset and on 
a newly collected dataset with co-located sensors, which we make 
available to the research community. Experimental results show 
that our multimodal approach outperforms the other methods 
both in 3D and on the image plane. 

 

I. INTRODUCTION 

Audio-visual person tracking is important for scene un- 

derstanding, human-robot interaction, and speech enhance- 

ment. Exploiting the complementarity of multimodal signals 

by effectively fusing audio and video data helps improve 

accuracy and robustness [1–6]. In fact, combining information 

from multiple modalities is preferable to using each modality 

individually [3, 7–13]. For example, video analysis is chal- 

lenging under clutter and varying lighting conditions, whereas 

sound sources may be intermittent or corrupted by background 

noise and reverberation. Tracking accuracy can improve when 

sound-source position estimates are combined with temporal 

visual observations on the image plane [12] or sound is used 

to help estimate people trajectories in unseen regions [9]. 

Visual trackers often use color histograms as features 

alongside object detections. In particular, face detectors are 

highly accurate [14–16], but they may fail under challeng- 

ing poses, occlusions or low resolution. The signal from 

microphone pairs can generate Sound Source Localization 

(SSL) estimates [5, 10, 17–19], using, for example, the 

Generalized Cross Correlation (GCC) [20]. Among GCC 

methods, Generalized Cross Correlation with Phase Transform 

(GCC-PHAT) [20, 21] is preferable under reverberation or 

rapidly varying acoustic characteristics, when the spectral 

distribution of the noise cannot be estimated [22]. Recently, 

GCC and GCC-PHAT have also been applied in different 

fusion based tracking tasks, as described in [23, 24]. Combin- 

ing observations from multiple (spatially distributed) micro- 

phone pairs in a 3D Global Coherence Field (GCF) acoustic 

map [25], also known as Steered Response Power PHAse 

Transform (SRP-PHAT) [26], performs well under noise and 

reverberation [22]. Audio-visual trackers combine these fea- 

tures to generate estimations on the image plane [1, 18, 27, 28], 

on a ground plane [5, 18, 29], or in 3D [4, 9, 10, 19, 30–35]. 

3D audio-visual trackers rely on stereo cameras [19, 32], 

depth cameras [35] or spatially distributed sensors [4, 9, 10, 

30, 31, 33, 34]. The different views of spatially distributed 

sensors lead to a better coverage and estimates that can 

be obtained via triangulation. Moreover, there is a higher 

likelihood that at least one microphone pair captures the direct 

path of the target speech or at least one camera observes 

the target from a favourable view. Using a compact audio- 

visual sensing platform, instead, is challenging especially for 

depth estimation as targets are not surrounded by sensors 

(thus reducing the available spatial information). Moreover, the 

inter-microphone distance is small compared to the speaker- 

array distance [36]. For these reasons, triangulating the target 

position leads to noisy SSL estimates and therefore trackers 

for co-located sensors are usually constrained on the image 

plane [12, 18, 28, 37], except when using stereo vision [19]. 

To address these limitations, we propose a novel Audio 

Visual 3D Tracker (AV3T), which uses multimodal signals 

from a compact audio-visual sensing platform composed of 

a small circular microphone array and a monocular camera. 

AV3T derives 3D visual observations by estimating the mouth 

positions of the targets from face detections, which also assist 

audio processing by reducing 3D localization uncertainties due 

to the small inter-microphone distance. This improvement is 

achieved by constraining the audio likelihood at the speaker- 

height plane, which is inferred from previous detections. 

By removing a degree of freedom in acoustic localization, 

the estimates are more accurate than the video estimates 

determined from the scaling factor on detected faces. More- 

over, AV3T uses a color-based generative visual likelihood to 

compensate for misdetections within the Field-of-View (FoV) 

of the camera through color templates of the target that 

are updated from previously detected faces. Finally, after a 

greedy data association, a Particle Filter (PF) ensures a smooth 

tracking of the multimodal observations. In summary, the main 

novelties are (i) the conditional selective visual models, (ii) 

the cross-modal combination of the audio and video cues, 

(iii) the video-driven audio processing and (iv) a particle filter 

implementation for 3D audio-visual tracking with co-located 

sensor. 

To the best of our knowledge, we are the first to perform 

3D audio-visual tracking using a small co-located sensing 

platform with a single camera, and with multiple simultaneous 
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TABLE I 

Audio-visual datasets, their sensor setup, annotations and content. KEY - # m: number of microphones; fa : audio sampling frequency (kHz); CA: Circular 

Array; # c: number of cameras; fps: frame per second; col.: co-located platform; cal.: calibration information; VAD: voice activity detection; bbox: bounding 
box; # spk: maximum number of speakers present in the scene simultaneously; -: not applicable. The unit of the resolution column is pixels. Columns with 

gray shading indicate information that is required for our experiments. 

 

 Sensors Annotation Content 
Audio Video 

col. cal. VAD 3D Image # spk 
Dataset # m fa CA # c resolution fps 

AVTRACK-1 [38] 4 44.1 - 1 640 × 480 25 C - C - active speaker(s), upper-body bbox 2 

AVASM [39] 2 44.1 - 2 N/A - C - - - loudspeaker position 1 

AVDIAR [12] 6 48 - 2 1920 × 1200 25 C C C - head, upper-body bbox 4 

RAVEL [40] 4 48 - 2 1024 × 768 15 C C C C speaker bbox 5 

CAVA [41] 2 44.1 - 2 1024 × 768 25 C C - C corner points 5 

SPEVI [42] 2 44.1 - 1 360 × 288 25 C - - - face bbox 2 

AMI [43] 14+ 48 C 2+ 720 × 576 25 - - C C head, face bbox, hand N/A 

CHIL [44] 88 44.1 - 5 1024 × 768 30 - C C C face bbox; head, eyes, nose position 5 

AV16.3 [45] 16 16 C 3 360 × 288 25 - C C C mouth, head position 3 

CAV3D (ours) 8 96 C 1 1024 × 768 15 C C C C mouth position 3 

 
 

speakers who also move outside the FoV. Compared to our 

preliminary work ([33, 46]), this paper presents a new fusion 

strategy, the extension to multiple targets, a joint model of the 

likelihood functions through a repulsion mechanism, a multi- 

part color matching and an in-depth experimental analysis. We 

also contribute a new annotated audio-visual dataset with up to 

three simultaneous speakers recorded by a circular microphone 

array and a co-located camera. 

II. BACKGROUND 

In this section, we discuss and compare audio-visual 

datasets and trackers. Depending on the relative position of 

the microphones and the camera(s), audio-visual datasets can 

be classified as co-located or spatially distributed. 

AVTRACK-1 [38], AVASM [39], AVDIAR [12], 

RAVEL [40] and CAVA [41] were captured with co-located 

audio-visual sensors mounted on a dummy head, recording 

speakers talking in turns and, occasionally, simultaneously. 

AVTRACK-1, AVASM, and AVDIAR have image-plane 

annotations only. In AVTRACK-1 [38], speakers move slowly 

inside the FoV, close to the platform and mostly facing the 

camera. In AVASM [39], the sound source is a stationary 

loudspeaker that emits white noise or speech from different 

positions. AVDIAR [12] includes a multi-party dialog with 

speakers moving while turning their heads towards other 

participants, rather than facing the platform. RAVEL [40], 

was designed for human-robot interaction tasks and therefore 

the movements of the speakers are limited and very close 

to the platform. CAVA [41] uses one microphone pair and 

therefore supports only the study of limited audio processing 

functionalities, such as azimuth estimation. The scenario 

considered here mimics natural head movements of an active 

perceiver that also pans or moves around, and joins different 

small groups of people chatting. SPEVI [42] uses Stereo 

Audio and Cycloptic Vision (STAC) sensors [18], which 

consist of two microphones mounted on a 95-cm long bar 

with a camera in the middle. Audio direction information 

can be mapped onto the image plane through the audio- 

visual sensor’s geometric relationship, without calibration 

information. However, the size of the platform limits the 

range of its possible applications. 

 

CHIL [44], AMI [43], and AV16.3 [45] were captured with 

spatially distributed audio-visual sensors. CHIL [44] recorded 

meetings and seminars in different rooms with four corner- 

cameras and one ceiling-camera, and a variety of acoustic sen- 

sors, including three 4-element table-top microphones, three 

4-element T-shaped arrays and a 64-element linear array. An- 

notations include the centroid of the head, the position of nose 

and eyes, the face bounding box on the image plane, as well 

as the position in 3D. AMI [43] was collected in three meeting 

rooms, each equipped with cameras at the corners or on the 

ceiling, and with an 8-element circular array and a circular 

or linear compact array. A close-up camera was also used 

for each participant. Image-plane annotations are available as 

well as the location of people when seated. AV16.3 [45] is 

commonly used for audio-visual person tracking [1, 10, 33] 

and was recorded in one AMI meeting room, with multiple 

simultaneous speakers captured by three cameras on the walls 

and two circular microphone arrays on a table. Annotations 

include head bounding boxes on the image plane and mouth 

positions in 3D, as well as voice activity detection labels. 

Tab. I compares audio-visual datasets in terms of sensor 

types and configuration, annotation and content. 

Audio-visual trackers operate on the image plane, on a 

plane parallel to the ground, or in 3D. Acoustic information, 

such as Direction of Arrival (DoA) estimates, may be derived 

independently to assist color-based trackers by re-weighting 

visual posteriors on the image plane [1, 48, 49]. However, 

due to the non-stationarity of speech signals, this approach 

is subject to audio-estimate inaccuracies. These inaccuracies 

can be dealt with a Kalman Filter (KF) to validate the 

measurements with a Gaussian reliability window based on 

audio-visual correspondence [18]. However, reverberation and 

the absence of a direct acoustic path may introduce errors in 

the DoA projection on the image plane. As an alternative, an 

audio-visual alignment method can be trained to map onto the 

image binaural spectral features extracted from a microphone 

pair [12, 28]. Audio features are then combined with a multi- 

person visual tracker [15], where a semi-supervised Gaussian 

mixture model assigns observations to targets. Similarly, the 

color descriptor of bounding  boxes can be  combined with 
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TABLE II 
Audio-visual trackers, their processing and fusion methods. KEY – Ref: reference; co.: co-located platform; mic.: microphone array information; cam.: 

camera information; loc.: localization; trk.: tracker; MP: Microphone Pair (length in cm); CA: Circular microphone Array (diameter in cm); LA: Linear 

microphone Array (length in cm); TA: T-shaped microphone Array (length in cm); #s: number of cameras on the sensing platform; #w: number of cameras 
on the wall; DoA: Direction of Arrival; TDoA: Time Difference of Arrival; GCC-PHAT: Generalized Cross Correlation with Phase Transform; SSM: Sam 

Sparse Mean [47]; RTF: Relative Transfer Function; ILD: Interaural Level Difference; IPD: Interaural Phase Difference; GCF: Global Coherence Field; 
v-GCF: video-assisted Global Coherence Field; : color histogram; : color spatiogram; MSM: Multi-body Shape Model; SIFT: Scale-Invariant Feature 

Transform; KF: Kalman Filter; EKF: Extended Kalman Filter; PF: Particle Filter; MOT: Multiple Object Tracking; ILDA: Incremental Linear Discriminant 
Analysis; CAMShift: Continuously Adaptive Mean Shift; PHD: Probability Hypothesis Density filter; PSO: Particle Swarm Optimization; GM: Graphical 

Model; N/A: information Not Available; -: not applicable. 
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binaural features for multi-speaker tracking using individual 

KFs [37]. Spatially distributed microphone pairs and STAC 

sensors can be used for tracking on a plane parallel to the 

ground, without explicit height estimation [5, 17]. Individ- 

ual KFs can be used on each modality prior to fusion by 

PF [5]. Moreover, DoA estimates can be used to estimate 

trajectories in regions unobserved by cameras [17]. Spatially 

distributed sensors facilitate tracking in 3D. Signals from 

multiple microphone pairs and cameras can be processed 

independently and then fused in a PF [10]. DoA estimates 

are projected to the multi-camera views to initialize a 3D 

visual tracker [34]. Other strategies rely on the existence of a 

subset of sensors providing a direct audio-visual observation 

of the objects [4, 9, 30, 31]. Finally, a compact platform with 

a microphone pair and a stereo camera can be used to combine 

the multi-modal features with confidence measurements using 

Particle Swarm Optimization [19]. However, this approach 

needs objects to be always inside the overlapping FoV of the 

stereo pair. 

Fusion is a key component of multimodal trackers [52]. 

With late fusion, decisions are first obtained from individual 

modalities and then combined, thus making the final result 

sensitive to errors in each individual modality [5, 9, 10, 17– 

19, 30, 33] . Early fusion would integrate features immediately 

after their extraction [53], for example by concatenation. How- 

ever, to the best of our knowledge, no audio-visual tracker uses 

early fusion, mainly due to their different working spaces [2]. 

 

 
 

Fig. 1. Block diagram of AV3T, the proposed audio-visual 3D tracker. The 
blue blocks represent the computation of the visual likelihood (Sec. III-A). 
The red blocks represent the computation of the audio likelihood (Sec. III-B). 
The yellow blocks represent the audio-visual tracking (Sec. IV). 

 

 

 
Finally, with hybrid fusion modalities interact with each other 

before the final fusion stage [1, 4, 12, 28, 31, 34, 37, 48, 49]. 

Tab. II compares audio-visual trackers in terms of tracking 

space, sensor types, audio-visual processing, and fusion strat- 

egy. 

Ref Space 
 Audio Processing Video Processing Fusion 

co. mic. cam. loc. features trk. detection features trk. level method 

[1] Image - 1 CA (20) 1w DoA SSM - - HHSV - hybrid PF 

[48] Image - 2 CA (20) 1w DoA SSM - - HHSV - hybrid PHD 

[49] Image - 1 CA (20) 1w DoA SSM - - HHSV Mean-shift hybrid PHD 

[18] Image C 1 MP (95) 1s DoA GCC-PHAT KF change HRGB - late PF 

[12] Image C 1 MP (12), 
1 LA (22.6), 
2 CA (20) 

1s TDoA RTF - upper body HN/A MOT tracker [15] 
(tracklet + ILDA) 

hybrid GM 

[28] Image C 1 MP (12) 1s DoA ILD, IPD - N/A HN/A MOT tracker [15] 
(tracklet + ILDA) 

hybrid GM 

[37] Image C 1 MP (12) 2s - ILD, IPD - person HRGB - hybrid GM+KF 

[5] Ground - 4 MP (N/A) 1w TDoA GCC-PHAT EKF - HN/A Mean-shift [50], KF late KF 

[17] Ground - 5 MP (95) 5s DoA GCC - person - - late KF 

[19] 3D C 1 MP (47) 2s DoA GCC-PHAT - - HHSV CAMShift late PSO 

[30] 3D - 3 TA (40) 4w - GCC-PHAT - foreground, face 
upper body 

- PF late PF 

[4] 3D - 7 TA (40) 4w - GCC-PHAT - - HRGB , MSM - hybrid PF 

[9] 3D - 1 LA (126), 
3 TA (40) 

5w - GCC-PHAT PF face HRGB CAMShift, KF late PF 

[10] 3D - 2 CA (30) 1-2w TDoA GCC - face HRGB head tracker [51] late PF 

[31] 3D - N/A N/A - GCF - - HRGB , MSM PF hybrid PF 

[34] 3D - 1 CA (20) 3w DoA SSM - face HHue, SIFT - hybrid PF 

[33] 3D - 1 CA (20) 1w 3D GCF - upper body HRGB - late PF 

ours 3D C 1 CA (20) 1s - v-GCF - face SHSV - hybrid PF 
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Fig. 2. + sample mouth position estimates from face detections under varying 
poses; + center of the bounding box. 

 

 
III. AUDIO-VISUAL   PROCESSING 

(a) (b) 

 

Fig. 3. (a) Image-to-3D mouth projection. ρd : d-th estimated mouth position 

of target i at time t on the image plane; od : d-th projected mouth estimate in 

3D. Yellow: face bounding box on the image plane and its projection in 3D; 
cyan dashed line: diagonal of the bounding box (used for distance estimation); 
red cross: estimated mouth position; (x, y, z): 3D world coordinates; (u, v): 

image coordinates; (b) camera’s spherical coordinates. (x′, y′, z′): shifted 
world  coordinates  at  the  camera  center;  õd  :  the  counterpart  of  od    in  the 

We aim to track the mouth position, pt,i, of each target i I 
over time, t, in 3D world coordinates, given audio signals, st, 

captured by a small K-element circular microphone array, and 

video frames, Jt, captured by a monocular camera. We use a 

probabilistic tracking framework, with pt,i estimated as an 

expectation, given the past observations: 

pt,i ≈ p̂t,i = E[p|J0:t, s0:t], (1) 

where p is a generic 3D point. 

Fig. 1 shows the block diagram of the proposed tracker. 

We assume the audio-visual signals to be synchronized, the 

sensors  calibrated,  and  the  number  of  targets  |I| known  and 

constant (| · | indicates the cardinality of a set). 

spherical coordinates of the camera. 
t,i t,i 

 

A. Visual likelihood 
Fig. 4. Sample distribution of the 3D mouth-estimate errors in the image-to- 
3D projection process. 

Let f d =  (u, v, w, h)| be the bounding box of the d-th 

detected face of target i at time t, where d  Dt,i and Dt,i is 

the set of face detections associated to target i; (u, v) is the 
position of the top left corner of the box on the image plane, 

and (w, h) is its width and height (| denotes transpose). Given f d , we geometrically extract the mouth position as: 

 
visual likelihood in spherical coordinates, originated at the 

geometrical center of the camera (Fig. 3(b)). 

Let õd   be the estimated mouth position od     in the camera’s 

t,i 
 

 
d 
t,i 

 
= [I 

 
2×2 

 
, Λ]f d , (2) 

spherical coordinates. Assuming a Gaussian distribution on 

the accuracy of the 3D estimate (see Fig. 4), we evaluate the 

likelihood at p as: 

where Λ = diag(0.5, 0.75) is a diagonal matrix and I2×2 is Lv (J | p) =  
Σ

 exp 
h
− 
 

õd — p̃
  
Σ−1 

 
õd — p̃

 |i 
, 

a 2-dimensional identity matrix. Fig. 2 shows sample mouth 

position estimates from face detections under different poses. 

det   t 

d∈Dt,i 

t,i v t,i  
(4) 

We then derive the 3D mouth position estimate, od , with 

the pinhole camera model: 
where p̃  is the equivalent of p in the camera’s spherical coor- 

dinates and Σv is a diagonal matrix whose elements represent 

d 
t,i = Ψ(ρd  ; w, h, W, H), (3) different estimation accuracies. Note that we constrain in [0, π] 

the absolute difference between any two angles. 

where W and H are the expected width and height of the face 

bounding box in 3D and Ψ is the image-to-3D projection [54]. 

To estimate the scaling factor, we use the length of the 

diagonal, W 2 + H2, which is less sensitive to changes in 

face orientation than the width of the bounding box (Fig. 3(a)). 

The main uncertainties of 3D mouth position estimation 

from a monocular camera are in the range (distance), due to 

the inaccuracy in the hypothesized sizes of a face (W, H). 
We model these uncertainties, especially distinguishing the 

range estimates from azimuth and elevation, by designing the 

When a face detection is unavailable, we revert to a color- 

based generative model to find the most likely target position 

on the image. To this end, we use a color spatiogram [55], 

a histogram augmented with spatial means and covariances 

for each histogram bin, which provides a more discriminative 

target description. To better separate the target from the 

background (see Fig. 5) we use the HSV color space [1, 32]. 

To extract the spatiogram to evaluate the likelihood of p, 

we need to define the image region corresponding to a face 

in an hypothesized 3D location p. To this end, we create in p 

ρ 

o 
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(a) test image (b) histogram (RGB) (c) spatiogram (RGB) (d) histogram (HSV) (e) spatiogram (HSV) 

 

Fig. 5. Comparison of color descriptors. (a) Sample image. (b-e) Corresponding histogram and spatiogram in RGB and HSV. Yellow (blue) indicates a higher 
(lower) probability of target (mouth) presence at the corresponding pixel position. 

 

 

a 3D hyper-rectangle b (p; W, H) that is perpendicular to the 

ground (assuming an upstanding pose) and oriented towards 

the camera (to indicate a profile view in that pose). This 3D 

hyper-rectangle at p is then projected onto the image plane to 

obtain the rectangular bounding box of the person’s face in p: 

v = Φ [b (p; W, H)] , (5) 

where Φ indicates the 3D-to-image projection [54]. Finally, 

we compare the color feature surrounded by the bounding 

box v and a reference image of the target, updated from the 

last associated face detection fd whose 3D mouth estimate 
d 
t',i is closer to the averaged target position estimate p̂t'|∆t,i 

during the time interval [t′   ∆t, t′    1]. The similarities of two 
spatiograms are measured using [56], which is derived from 

the Bhattacharyya coefficient: 

Lv (J  | p) = 
Σ 

rbrb  8π|ΣbΣb (µb|µb, 2(Σb + Σb))  , 
 

Fig. 6. Details of the visual likelihood computation block in Fig. 1. 

 

 
where ηt,i is a flag set to 1 when target i is visible at time t. 

The process of the overall visual likelihood computation is 
HSV  t v f 

b=1 
v   f | 4 N v  f v f 

(6) 
shown in Fig. 6. 

where rb indicates the bth bin of the spatiogram computed at 

the image region, surrounded by v and b = 1, ..., B. µb and Σb 

 
B. Audio likelihood 

v v 

are spatial mean and covariance of the image pixels surrounded 

by v and belonging to the bth bin. Analogous definitions apply 

to rb, µb and Σb, where the dependency of f on d, t and i is 

Acoustic source localization can be accomplished by com- 

bining information from M microphone pairs to obtain an 

acoustic map (GCF [25]) that represents the plausibility of f f f 

dropped for simplicity. 
Let us define a target i as visible when it is inside the 

FoV  and  unoccluded  by  any  other  tracked  targets, ĩ.  When 

an active sound source being at a given spatial position. The 

GCC-PHAT [20, 21] at microphone pair m at time t is: 

there is no detection (Dt,i = ∅) and the target is not visible, 
∫ +∞ Sm1 (t, f )Sm

∗ (t, f ) 
 

 
j2πfτ 
 

 (9) 

the likelihood follows a uniform distribution, U. If J 0.9 is a 
Cm(τ, t) = 

−∞    |Sm1 (t, f )| .Sm
∗  

2
 (t, f ). 

df, 

rectangular crop corresponding to the central 90% region of 

the image, the first condition (inside the FoV) can be expressed 

as: 

p′
t|∆t,i  ∈ J0.9, (7) 

where f indicates frequency, Sm1 and Sm2 are the Short-Time- 

Fourier-Transform (STFT) computed at the mth pair with 
microphones m1 and m2, τ indicates the inter-microphone 

time delay and ∗ is the complex conjugate. Ideally, Cm(τ, t) 
where p′

t ∆t,i is the averaged target estimate on the image 

plane during the time interval [t ∆t, t 1]. The second 

condition (unoccluded) is that the distance between the po- 

sition  estimate  of  target  i   and  any  other  target  ĩ   on  the 

exhibits a peak when τ equals the actual Time Difference of 
Arrival (TDoA). The GCF value in p is thus derived from the 

GCC-PHAT computed at all the M  microphone pairs: 
M 

image plane is farther than half-diagonal-size of the last 

face detection. Otherwise, the target closer to the camera is 

g(p, t) = 
 1 

C 
M 

m 

m=1 

(τm (p), t) , (10) 

considered unoccluded. 

Finally, we define the visual likelihood as: 
where τm(p) is the TDoA expected at the mth microphone 

pair if the emitting source is in p. The position of the sound 

emission can be estimated by picking the peak of g(p, t). 
v 
det (Jt | p) if Dt,i ∅ However, the performance of GCF is sensitive to the micro- 

Lv(Jt | p) = v 
HSV (Jt | p)   else  if ηt,i = 1, (8) phone array configuration. A small planar microphone array 

U(p) otherwise. (as in our case) cannot estimate the speaker height without 

e 2 

o 

L 

L 
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− 

t,i 

t,i 

HSV t,i 

t,i t,i t,i t,i 

t,i 
b i t,i t−1,i 

t,i t−1,i 

v 
M 

m m t',i p̂t,i  = ω(n)p(n), (16) 

t',i 

Resampling Particle Filter (SIR-PF) [58]. We instantiate an 

SIR-PF for each target i with a repulsion mechanism that 

ensures that multiple filters do not collapse on a single target. 
Let p(n)  be particle n (n = 1, . . . , N ) of target i at time 

t,i 

t, whose state is p = (x, y, z) , where x, y, z are the world 
 

 

 
 

(a) test image (b) fixed azimuth 

coordinates. Assuming conditional independence across the 

modalities, the multimodal likelihood equals the product of the 

individual ones [4, 5, 10, 18, 31, 33]. We, therefore, compute 

the weight of each particle as: 

ω(n) ∝ 
h
La(st|p(n))Lv(Jt|p(n))

i 
ψ(n), (13) 

 

 

 

 

 

 

 

 
(c) fixed elevation (d) fixed radius 

 

Fig. 7. Sample GCF results in spherical coordinates. (a) The reference 
spherical coordinates (in red), whose origin is at the center of the microphone 
array; (b)-(d): GCF computed in 2D when fixing, respectively, azimuth, 

where Lv and La are defined in Eq. 8 and Eq. 12. Distance 

between targets can be used to overcome observations being 

corrupted during occlusions [34]. We want to force particles 

of a target near another target to be suppressed and to favour 

the resampling of particles farther away in the state space. 

The result of this process is that particles will appear as if 

they were drifting away from the other target as if a repulsion 

force was applied. The term ψ(n) implements this repulsion 

process on the particles. When their distance is smaller than 

b, particle weights are reduced as: 

elevation and radius at the ground truth The smaller the yellow region, the 

 ψ
(n)  

= 2
1  min(min˜ ||p(n)−p̂ ˜||2,b) − 1, (14) 

 
microphone pairs spanning the vertical dimension. Moreover, 

the small inter-microphone distance compounds the errors in 

where b  is the minimum allowed distance between mouths, ĩ 
indicates the identity of any other targets. ψ(n)  can be seen as 

a notch filter applied to the likelihood. Weights are normalized 

distance estimation. Fig. 7 exemplifies this problem with GCF 
N 
n=1 ω(n) = 1. 

in spherical coordinates, whose origin is at the center of the 

array. Each subplot shows a 2D acoustic map when the third 

coordinate is given by the ground truth. It is evident that 

To encourage particles to explore the state space and to facil- 

itate target re-identification after a target loss, the propagation 

in the prediction step is defined as: 

the localization would be very accurate if the speaker-array 

 
p

(n) = p(n) 
+ 3κq, κ ∈ {0, 1} (15) 

To address this problem we propose a novel localization 

approach that uses visual 3D position estimates of mouths 

to suggest the most likely speaker-height plane to reduce the 

audio working space from 3D to 2D. This video-assisted GCF, 

gv(p, t), is formulated as: 
M 

where q is sampled from a zero-mean Gaussian with diagonal 

covariance matrix Σq. We use a higher prediction speed for 

low-scoring hypotheses: if a particle weight is in the lower 

10%, then κ = 1; otherwise κ = 0. 

Finally, the position of target i  at time t, p̂t,i, is estimated 
as: 

g (p, t) = 
 1  Σ 

C    
 
τ   (p|od,z ), t

   
, (11) Σ 

m=1 

where p|od,z is the projection of a generic 3D point p on the 

t,i    t,i 
n=1 

t',i 

2D plane defined by the height of the mouth, od,z , estimated 
which is an approximation to the expectation in Eq. 1. At 

each iteration, new particles are drawn from the discrete set 

from the last associated face detection fd (that occurred at {p(n), ω(n)}N using weighted re-sampling [58]. Algorithm 1 
d,z 

frame t′), and τm(p|o ) is the corresponding TDoA. Thus, summarizes the proposed tracker. 

we define the audio likelihood as: 

 

g (p, t)    if max  g (p, t) ϑa 
L (st  | p) = 

U(p) otherwise, 

 

 

(12) 

We associate a detected face bounding box f d to target i 
considering the last position estimate p̂t    1,i, through a greedy 

strategy (as used in [59]) with a discriminative visual model 
that approximates an optimal single-frame solution (Algorithm 

2). We first derive a matching score matrix A for each target- 

where ϑa is a threshold relying on the likelihood peak value detection pair (i, d) using the face and the torso of the target: 

to detect speech activity at the candidate states [4, 31, 33, 57]. At(i, d) = Lv (Jt|p̂ )[Lv (Jt|od  ) + Lv (Jt|o′d )], 
det t−1,i HSV t,i HSV t,i 

(17) 
IV. 3D AUDIO-VISUAL TRACKING where o′d

 
d 
t,i − 0.4z is the 3D torso point derived from the 

The individual likelihoods proposed in the previous section mouth location estimate od shifted along the vertical axis z. 

support multi-modal tracking through a Sequential Importance To evaluate Lv (Jt|o′d ) we use a torso spatiogram model of 

distance were known (Fig. 7(d)). 

more certain the GCF (   microphone array center; + SSL estimate; + GT). 

N 

= o 

t,i t,i n=1 

| 
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\ \ 

L = L t,i 

t,i 

t,i 

t,i 

× 

× × 

d 
q
≤ λ    w 

t t 

t,i t,i 

(n) (n) 

 
 

  Algorithm 1: The AV3T tracker  

Initialize: 
t, i, λ, ∆t, ϑa, b, {p , ω }N     , T, Λ, W, H, N, B, M, q 

 
 

Algorithm 2: Greedy data association 
 

 

I: set of target indices 
Dt: set of detections at time t 

while t ≤ T do 

ρd = [I2×2, Λ]f d 

t0,i t0,i n=1 
 

%mouth estimate 

At(i, d): score for each target-detection pair (i, d) 
Dt,i: set of detections associated to target i 

od  = Ψ(ρd; w, h, W, H) %image-to-3D projection 
t t 

compute Dt,i with Algorithm 2 %data association compute At(i, d)  with Eq. 17, ∀i ∈ I , ∀d ∈ Dt 

p
(n) = p(n) + 3κq %propagate particles while I ∅ ∧ Dt /= ∅ do 
t,i t−1,i (i∗, d∗) = argmax A (i, d) 

if Dt,i /= ∅ then 
∗ ∗ 

i∈I,d∈Dt t 

Lv = Lv (Jt|p(n)) %discriminative model if (i , d ) satisfies Eq. 18 then 

else det t,i Dt,i∗  ← d∗ 

if target is visible then 
I = I i∗ %  indicates exclude 

end 
v v 

HSV (Jt|p(n)) %generative model Dt = Dt \ d∗ 
else 

Lv = U(p(n)) %uniform distribution 

end 
 

 

end 

end 

La = gv(p(n), t) %video-assisted GCF 

if La ≤ ϑa then 

La = U(p(n)) %uniform distribution 

end 

ψ
(n)  

= 2
1  min(min˜ ||p(n)−p̂ 

 

˜||2,b) − 1 %distance 
b 

t,i 

function 

i t,i t−1,i 

ω(n) ∝ LaLvψ(n) 

ω(n) = ω(n)/ 
ΣN 

 
  

ω(n) 

 
 

%weights normalization 

p̂t,i  = 
ΣN

 

ω(n)
p

(n) 
%3D position estimate Fig. 8. Left: Recording environment of the CAV3D dataset. Yellow markers 

Re-sample N  particles from {p(n), ω(n)}N on the ground are used to calibrate the corner cameras. A close-view of the 

t = t + 1 
end 

t,i t,i n=1 co-located sensor (surrounded by the red ellipse) is inserted on the bottom 
right of the picture: the camera is around 48 cm above the microphone array. 
The region covered by the camera’s FoV is within the red dashed line. The 
world coordinates x, y, z are originated at the top-right room corner, which 
are marked as magenta, green and blue respectively; Right: keyframes. 

 

target i instead of its head model. Then, we iteratively select 

the pair with the maximum score until no further valid pair is 

available. This data association process has a lower computa- 

tional cost than the Hungarian algorithm [60], which makes 

associations in polynomial time; Multiple Hypothesis Tracking 

(MHT) [61], which considers multiple possible associations 

over the several past frames and has the highest complexity; 

and Joint Probabilistic Data Association Filter (JPDAF) [62], 

whose complexity grows exponentially with the number of 

targets. 

A gating stage ensures that the associated detection is within 

a neighborhood of the target [63]: 

 
for 3D tracking. CAV3D contains up to three simultaneous 

speakers captured in a 4.77 5.95 4.5 m room. The sensing 

platform, placed on a table, consists of a camera co-located 

with an 8-element circular microphone array (K = 8) of 20- 

cm diameter. The 8-channel audio signals were recorded at 96 
kHz (24 bits). Videos (768  1024 pixels) were recorded at 

15 frames per second (fps) with a CCD color camera whose 

FoV is about 90◦. The recording environment and keyframes 

are shown in Fig. 8. 

The dataset includes 20 sequences whose duration varies 

from 15 to 80 s and are organized in three sessions, namely: 

||ρt,i — p′
t|∆t,i ||2 

 

2 
t',i 

 

2 
t',i , (18) 

CAV3D-SOT (9 sequences with a single speaker), CAV3D- 

SOT2 (6 sequences with a single speaker but two people 

where λ controls the size of the neighborhood. 

 
V. THE CAV3D DATASET 

Most audio-visual datasets focus on image-plane track- 

ing [12, 38, 39, 42]. Datasets with 3D ground truth are either 

collected from spatially distributed sensors [43–45], or contain 

slowly moving or stationary targets [40, 41]. To overcome 

the limitations of these datasets [64], we collected CAV3D, 

a dataset recorded from a Co-located Audio-Visual platform 

present in the scene) and CAV3D-MOT (5 sequences with si- 

multaneous speakers). The speakers perform different actions, 

undergo occlusions, have non-frontal views, enter/exit the 

camera’s FoV, and have long non-speech periods. The room 

has strong reverberation (about 0.7 s [65]), background noise 

(e.g. from an air conditioner), human-made noise (e.g. clapping 

and stomping). 

Parameters of the co-located platform sensor models were 

calibrated in the following way. We used markers with known, 

manually measured 3D position to align the camera model 

t,i t,i n=1 

+ h 

t,i t,i n=1 t,i 
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× 

Σ Σ 
||

 

| | 

img 
|I |T̃  

t,i t,i 2 

to the world coordinate system (see Fig. 8). The camera 

follows a conventional pinhole model with radial distortion 

correction and we used standard procedures from OpenCV to 

estimate their parameters in three steps: (i) intrinsic parameters 

from a sequence of images showing a planar chessboard 

pattern in front of the camera at different poses; (ii) extrinsic 

parameters from 3D-2D point correspondences of 3D scene 

markers and their manually annotated 2D image coordinates; 

and (iii) a non-linear multi-view optimization that is detailed 

in the next paragraph. As for the audio acquisition chain, 

3D microphone positions in the world reference system were 

manually measured with cm precision. Pre-amp gains were 

tuned to ensure the same sensitivity and dynamics across 

different channels. A complete description of the calibration 

process with implementation details is provided at the dataset 

webpage that is referenced at the end of next paragraph. 

The speech/non-speech frames were annotated with Tran- 

scriber1, including the speaker identities of individual seg- 

ments. We also equipped the room with four additional cam- 

eras at the top corners to facilitate the annotation process. 

These cameras were hardware-triggered to ensure frame-level 

synchronization with the audio-visual sensing platform. We 

annotated mouth positions on each frame of each additional 

camera: frames were displayed sequentially in a graphical user 

interface, with a superimposed 50 50 cropped candidate 

region centered at the position annotated at the previous frame, 

for the annotator to update the replicated mouth location with 

a mouse click. Next, using scene markers with known 3D 

position, we initialized calibration parameters for each camera 

using Zhang’s method [66]. This calibration was used to back- 

project to 3D rays each timestamped annotation tuple. We 

then computed the spatial least-squares intersection of the 

rays using Singular Value Decomposition. This intersection 

provides an estimate of the 3D mouth location associated with 

each annotation tuple. Finally, we run an optimization based 

on Sparse Bundle Adjustment [67] to obtain 3D trajectories, 

accurate calibration, and an algorithmic correction of the man- 

ual annotations by minimizing the re-projection error on all 

views and sequences simultaneously. This joint optimization 

provides more accurate, high-quality annotations on the image 

plane and is available with the dataset for evaluation. The 

dataset is available to the research community2. 

individually. We use sequences with the 3D ground truth: for 

Single Object Tracking (SOT) we use seq08, 11, 12; whereas 

for Multiple Object Tracking (MOT) we use seq18, 19, 24, 25 

and 30. 

 

A. Implementation details 

AV3T detects faces with an MXNet implementation of the 

light Convolutional Neural Network (CNN)3 [68]. The other 

AV3T parameters were defined on a small set of sequences 

not used for testing: the number of points in STFT is 212 on 

AV16.3 and 215 on CAV3D; the speech activity threshold, ϑa, 

is 0.1 for AV16.3 and 0.03 for CAV3D4; the number of bins 

per channel is B = 8 [1, 3, 17]; (W, H) = (15, 20) cm is an 

approximate average size of a face’s central region; the face 

validation parameter λ = 2.5 and the time lag ∆t = 3 is set 

to avoid large instant tracking error on data association; the 

number of microphone pairs is M = 28 [33]; the number 

of particles per target is N = 100; the prediction matrix 

Σq = diag(1, 1, 0.5) m/s when target is inside the camera’s 

FoV and is divided by 10 when it is outside; the update matrix 

in the discriminative model is Σv = diag(2◦, 2◦, 0.4m); and 

b = 20 cm indicates the minimum feasible distance between 

two mouth estimates under a side-by-side face situation. Note 

that except for the STFT points and the voice activity thresh- 

olds which depends on the sampling rate, we use the same 

parameters for both datasets. Because the number of targets 

is constant and known, filters are initialized at the ground- 

truth positions at time t0 with added Gaussian noise. Given 

the probabilistic nature of the PF, all results are averaged over 

10 runs. 

 
B. Performance measures 

We use as performance measures Track Loss Rate (TLR) 

and Mean Absolute Error (MAE) in 3D and on the image 

plane. 

TLR is the percentage of frames with a track loss. We 

declare a target to be lost if, in 3D, the error is above 30 

cm and, on the image plane, if the error is larger than 1/30 of 

the length of the image diagonal or if only the ground truth 

or the estimate is inside the FoV. 

The MAE in 3D (in m) is defined as: 

|I|    T 

VI. RESULTS ε3d 
=  

   1    
p̂ 

|I |T  
i=1  t=1 

 
t,i — pt,i ||2, (19) 

We compare the proposed AV3T with [10], [33] and with 

individual audio and video pipelines. In addition to 3D track- 

ing, we also consider performance on the image plane and 

compare our results with the audio-assisted visual tracker in [1]. As datasets we use CAV3D and AV16.3. AV16.3 has no 

where I is the total number of targets and T is the total 

number of frames. The MAE on the image plane (in pixels) 

is defined as: 
|I|      T̃  

ε =  
   1    Σ Σ 

||p̂′    − p′   || , (20) 
 

location in 3D. We use the first circular microphone array 

(we did not observe performance changes when considering 

the other array) and each (of the three) corner cameras 

1Transcriber: http://trans.sourceforge.net/en/presentation.php 
2The CAV3D dataset and the code of AV3T will be available for download 

at: https://ict.fbk.eu/units/speechtek/CAV3D 

where T˜ is the total number of frames where both the estimates 
and  the  ground  truth  is  inside  the  FoV,  p̂′

t,i   is  the  estimated 

position of the target and p′
t,i is the ground-truth position. 

3https://github.com/tornadomeet/mxnet-face 
4Note that different audio parameters are due to different audio sampling 

frequencies in the two datasets. 

i=1 t=1 

co-located sensors but has small circular microphone arrays, 

cameras with calibration information and mouth ground truth 

http://trans.sourceforge.net/en/presentation.php


10 
 

· 

TDoA 
· · 

Σ 1

  τ 

TABLE III 
MAE (m) for SSL estimates on AV16.3 and CAV3D, single speaker 

sequences. For simplicity, ’ ’ represents the variables of a function. ’s’ 
indicates results are computed at the speaker’s ground truth height plane. 
Key – g(·): GCF computed in 3D; La (·): maximum TDoA based 

likelihood; gv ( ): video-assisted GCF; g( )s: GCF on ground truth height 
plane (upper bound). 

 
 g(·) La (·)s 

TDoA gv (·) g(·)s 
CAV3D .85 .56 .53 .47 

AV16.3 .48 .31 .31 .19 

 

 

To simplify the notation, we will use ε to represent either 

ε3d or εimg. Moreover, since ε would be considerably affected 

by the large errors due to target losses [69], we introduce ε′ 
that denotes the MAE computed on frames when tracking 

is successful i.e.estimates are located within 30 cm in 3D 

from the target. In summary, TLR and ε represent the % of 

frames that a tracker follows the target and the precision of 

the position estimates, while ε′ is a compound measure of the 

two errors. 

 
C. Evaluation of AV3T and its components 

We quantify the contribution of each component in terms 

of performance and compare with alternative solutions. In 

particular, we motivate the adoption of the acoustic map and 

the use of the generative visual likelihood in combination with 

face detections. 

A TDoA-based likelihood [5, 6, 10, 18, 57] could be an 

alternative to our GCF likelihood (Eq. 11). For M microphone 

pairs, the TDoA-based likelihood is: 

 

 

 

 

 

 

 

 
 

Fig. 9. Acoustic maps computed at the ground-truth speaker-height plane. 
First row: speaker position and pose; second row: GCF map; third row: TDoA 
map. Yellow (blue) corresponds to higher (lower) probability of a source being 

present ( microphone; + SSL estimate; + ground truth). 

 
 

a 

TDoA 

 

(st | p) = exp 

 

M 

− 
2Mσ2 

m=1 

(τm(p) − τ̂m)2

! 

. 

(21) 

where τˆm is the estimated TDoA corresponding to the peak 

of the GCC-PHAT Cm(τ, t), and the standard deviation στ 
represents the estimation uncertainty. The TDoA likelihood 

estimates the most likely time delay for each microphone pair 

and the final results are sensitive to inaccuracies at individual 

pairs, especially when the speaker is far from the microphone 

array. Conversely, GCF postpones any decisions to when 

the results from all microphone pairs have been combined. 

Moreover, the TDoA likelihood relies on the noise standard 

deviation στ , which is more sensitive to varying acoustic 

environment. Fig. 9 shows audio likelihood maps for GCF 

and TDoA, computed at the ground-truth speaker-height plane: 

GCF has a better localization accuracy than TDoA. 

Tab. III compares SSL results on AV16.3 and CAV3D when 

speaker-height information is available. Adding a prior on 

speaker-height substantially increases performance (column 1 

vs. column 2-4). Moreover, the video-assisted GCF likelihood 

outperforms the TDoA likelihood (column 2 vs column 3) 

without using the ground truth information, thus confirming 

what is shown in Fig. 9. Finally, the 3D video estimates can 

be used to suggest the most likely speaker-height (column 1 

vs column 3), but a considerable margin is still available if 

the ground-truth speaker-height is used (column 4). 

Fig. 10. Localization error for image-to-3D projection (blue) and video- 
assisted GCF SSL (red) when varying the length of the diagonal of the face 
bounding box on AV16.3. 

 

 
 

Fig. 10 compares the localization accuracy of the 3D video 

estimates (blue) and the video-assisted audio estimates (red) 

under varying lengths of the diagonal of the face bounding 

box. The video estimates derived from the image-to-3D mouth 

projection (Eq. 3) are very sensitive to the hypothesized face 

size that affects the scaling factor estimation which, in turn, 

leads to inaccurate depth estimations. While video-assisted 

GCF also depends on the face size, which determines the 

height estimation, the corresponding sensitivity is lower. 

Let the Face Detection Rate (FDR) measures the ratio 

between the number of frames with a detection (including 

true and false positives) and the overall number of frames. To 

validate the generative model combined with face detections 

in the video likelihood, Tab. IV compares video-only tracking 

on AV16.3 (targets always inside the camera’s FoV), using the 

discriminative model only (VO−), and both the discriminative 

and generative models (VO). With the generative model, TLR 

in 3D decreases from 62.3% to 54.28% on SOT and from 

70.01% to 55.63% on MOT. Improvements are observed also 

L 
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TABLE IV 
Video-only tracking results on AV16.3 with the discriminative model only 

(VO−) and both discriminative and generative model (VO). KEY – FDR: 

Face Detection Rate; TRL: Track Loss Rate; ε: MAE on all frames; ε′: 
MAE on successfully tracked frames. 

 

 

 

 

(a) AV16.3-seq08-cam3 (b) AV16.3-seq25-cam3 

 

  
 

 

 

Fig. 11. The sensitivity of AV3T to the number of face detections. 

 

 
in terms of MAE. (Note that for less than half of the frames 

a detection is available.) On the image plane, TLR decreases 

from 41.78% to 8.78% on SOT and from 59.94% to 14.57% 

on MOT. These results confirm that using only face detections 

is insufficient in realistic conditions. 

We also investigate the sensitivity of AV3T to the number 

of available face detections. Fig. 11 shows the influence on 

the average MAE in 3D of randomly removing detections 

(30, 50, 70, and 90%) on CAV3D and AV16.3. The face 

detection rates on CAV3D-SOT, CAV3D-SOT2, CAV3D-MOT 

sequences are 71.0%, 99.4% and 90.1%, respectively; and 

equal to 44.0% on AV16.3-SOT and 46.8% on AV16.3-MOT 

(the higher detection rate in CAV3D is due to the higher image 

resolution). Removing detections in AV16.3 has little influence 

on the 3D tracking accuracy as the audio and video scenarios 

have comparable difficulty levels (and both are simpler than 

in the CAV3D dataset). Instead in CAV3D, where the audio 

scenarios are more challenging than the video ones (strong 

room reverberation, rapidly moving distant speakers who are 

not oriented towards the platform), the face detector plays an 

important role. Note that, however, the audio-visual results 

are always superior to the unimodal results (as we will see in 

Tab. V and Tab. VI). 

Fig. 12 shows 3D trajectories on AV16.3 and CAV3D. 

Fig. 12(a) compares different modalities when the speaker 

walks forward and backward in the room. The video trajectory 

(blue line) is far from the ground truth (green line) because of 

varying detection sizes on profile and frontal faces for the 

image-to-3D projection (Eq. 3). However, since the video- 

assisted GCF is not sensitive to the detection size (see Fig. 10), 

the AO(2D) (tracking on the speaker ground truth height plane, 

in magenta) and AV3T (red) results are unaffected. Fig. 12(b) 

shows the tracking of two speakers (marked as blue and red), 

which are very close to the ground truth trajectories. Fig. 12(c- 

d) compares different modalities in CAV3D in situations when 

the VO trajectory (blue) is bounded by the FoV whereas 

(c) CAV3D-SOTs2 (d) CAV3D-SOTs8 
 

Fig. 12. 3D trajectories from AV16.3 (top) and CAV3D (bottom). Green 
indicates the ground-truth trajectories. 

 

 
AO(2D) (magenta) and AV3T (red) can follow the target 

outside the FoV as the speaker is active. 

 
D. Comparisons with state-of-the-art methods 

We finally compare AV3T against state-of-the-art (SoA) 

methods in 3D [10, 33] and on the image plane [1, 33]. We 

use the results reported in [1] for AV16.3 and conducted new 

experiments on CAV3D by using the image ground-truth as 

the audio observation, which eliminates the influence of the 

two different SSL methods, i.e. [47] for [1] and [25] for ours. 

Moreover, because [1] cannot track target outside the FoV, we 

re-initialize their tracker at the image ground-truth when it re- 

enters the scene. Frames without a target are not considered 

in the error computation. For [10] and [33] we include the 

proposed likelihoods in our PF implementation to compare 

with the same tracking parameters. For [10] we use the image 

ground-truth again instead of using noisy visual observations 

from the head tracker [51] and therefore its results should be 

considered an upper bound for the method. 

Tab. V shows that AV3T considerably outperforms the other 

methods (and the unimodal approaches) in terms of TLR on 

CAV3D. The tracking accuracy in CAV3D-SOT2 is better than 

in CAV3D-SOT, which includes abrupt speaker-orientation 

changes and more challenging actions, such as clapping, 

stomping and arranging objects. Note how the performance 

of [1] decreases considerably in CAV3D. Note that it is not 

possible to compare with [33] that is not a multi-target tracker. 

Tab. VI shows that the availability of spatially distributed 

sensors in AV16.3 facilitates 3D tracking and all methods 

perform considerably better than in CAV3D. In AV16.3-SOT, 

AV3T outperforms [33] the unimodal trackers in terms of 

TLR in 3D, and achieves a slightly higher TLR (13.3%) than 

[10], which however uses the image ground-truth and benefits 

from the triangulation of distributed sensors. Moreover, AV3T 

outperforms individual modalities on the image plane and is 

more accurate than [1] in the successfully tracked frames. In 

 Image 3D 
VO−

 VO VO−
 VO 

 

SOT 
FDR= 
44.0% 

TLR 41.78 8.78 62.30 54.28 

ε 37.4±9.5 8.1±.9 .74±.10 .43±.05 
ε′ 6.7±.4 5.3±.1 .16±.01 .15±.01 

MOT 
FDR= 
46.8% 

TLR 59.94 14.57 70.01 55.63 
ε 50.4±14.0 15.8±6.1 .75±.14 .50±.10 
ε′ 7.1±.9 5.1±.4 .16±.02 .14±.02 
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TABLE V 

Performance scores (the smaller, the better) on CAV3D. [10]s uses image ground truth as the visual observation. [1]s uses image ground truth as the audio 
observation. 

 

 Image plane 3D 
[1]s [33] AO (2D) VO AV3T [10]s [33] AO (2D) VO AV3T 

S
O

T
 TLR 29.5±12.4 25.0±1.2 52.2 ± 4.7 38.4 ± 17.5 7.0 ± 3.6 84.8±5.4 68.7±2.9 56.5±4.4 47.3±13.5 31.8±3.5 

ε 60.0±34.1 38.2±2.3 60.3 ± 6.9 80.2±103.0 16.5 ± 8.6 .84 ± .15 .50 ± .02 .52 ± .08 .76 ± .34 .30 ± .05 
ε′ 24.5±30.5 15.5 ± .4 27.7 ± 1.2 12.7 ± 1.1 12.2 ± .3 .17 ± .02 .20 ± .01 .17 ± .01 .16 ± .01 .16 ± .01 

S
O

T
2
 

TLR 33.0±18.5 23.0 ± .9 38.3 ± 3.9 13.4 ± 7.6 4.0 ± 1.6 85.2±4.5 62.9±2.8 43.6±4.9 20.1 ± 7.1 11.1±3.1 
ε 81.7±73.5 53.4±2.6 48.0 ± 6.0 36.5 ± 27.2 20.8 ± 5.4 .75 ± .07 .47 ± .02 .37 ± .07 .31 ± .12 .18 ± .02 
ε′ 23.7±64.5 13.3 ± .3 25.0 ± .6 12.0 ± .2 11.7 ± .2 .17 ± .02 .20 ± .01 .15 ± .01 .14 ± .01 .14 ± .00 

M
O

T
 TLR 16.0±10.0 - 59.4 ± 11.5 37.1 ± 7.1 11.2 ± 5.9 77.7±8.1 - 70.2±9.0 56.6 ± 6.2 35.7±6.6 

ε 59.3±33.9 - 155.7±60.6 127.9±60.1 24.8±23.7 .92 ± .23 - 1.03±.27 1.05 ± .22 .43 ± .12 
ε′ 17.6±27.4 - 19.9 ± 2.1 12.2 ± 1.3 10.1 ± .6 .16 ± .02 - .16 ± .02 .14 ± .02 .15 ± .01 

 

TABLE VI 

Performance scores (the smaller, the better) on AV16.3. [10]s uses image ground truth as the visual observation. 

 
 Image plane 3D 

[1] [33] AO (2D) VO AV3T [10]s [33] AO (2D) VO AV3T 

S
O

T
 TLR - 48.2 ± 3.8 48.1 ± 6.0 9.0 ± 1.9 8.5 ± 2.6 10.4 ± 3.4 29.2 ± 3.7 34.9 ± 8.9 52.7 ± 5.5 13.3 ± 4.3 

ε 11.8±.2 19.9 ± 1.6 24.1 ± 5.7 8.2 ± 1.1 7.7 ± 1.3 .15 ± .01 .25 ± .02 .28 ± .07 .41 ± .05 .16 ± .02 
ε′ - 8.5 ± .3 7.6 ± .5 5.3 ± .1 5.3 ± .1 .12 ± .01 .14 ± .01 .15 ± .01 .16 ± .01 .11 ± .01 

M
O

T
 TLR - - 56.6 ± 9.4 15.5 ± 9.0 9.2 ± 6.0 37.7 ± 5.6 - 44.9 ± 1.2 56.3 ± 9.8 15.8 ± 8.9 

ε 11.2±.1 - 38.4 ± 9.2 17.9 ± 8.8 10.1 ± 3.7 .31 ± .03 - .48 ± .12 .52 ± .11 .21 ± .07 
ε′ - - 7.7 ± .9 5.1 ± .4 4.9 ± .3 .14 ± .01 - .15 ± .02 .15 ± .02 .11 ± .01 

 
 

AV16.3-MOT, AV3T outperforms [10] in 3D in terms of TLR. 

The average 3D error of AV3T during tracking is 11 cm. 

 

E. Complexity and speed 

The complexity of our method is linear to the overall 

number of particles N (each evaluation of likelihood terms 

and their fusion is independent per particle) except for the first 

three steps in the while loop in Algorithm 1 that are not par- 

ticle operations: the first is a constant cost for face detection; 

the second has linear complexity in the number of detections 
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returned; and the third is the computational complexity of 

Algorithm 2, which is upper-bounded (no association possible) 

by: 

Fig. 13. Influence of the number of particles per target on tracking accuracy 
(solid lines) and on the execution time (dashed lines). 

|D  ||I|c + |D |c + |D |c + |I | 
|Dt|(|Dt| − 1) 

c  , (22)
 VII. CONCLUSION 

t A t    g t    0 
2 

0 

and lower-bounded (all i∗, d∗ are valid associations) by 

M 

|Dt||I |cA + Mcg + 3Mc0 +       (|Dt| − k)(|I| − k)c0,  (23) 
k=0 

 

where M = min( I , Dt ), cA, cg are the costs of evaluating 

Eq. 17, Eq. 18, and c0 is a (negligible) cost of (i) one 

comparison (in argmax), (ii) set insertion to update Dt,i∗ 

when the gating is passed and (iii) set reduction (of I, Dt). 

Fig. 13 shows an empirical evaluation of the computation 

speed of our implementation. Experiments were run with a 

non-optimized MATLAB code on a 3.3 GHz Intel Xeon CPU 

(E31245). The left y-axis indicates that in order to get stable 

performance with AV3T, 50 particles suffice. When N = 100, 

the execution time is 0.14 spf (7.19 fps) on AV16.3 and 0.21 

spf (4.77 fps) on CAV3D. 

We proposed AV3T, a novel 3D speaker tracker that uses 

audio-visual signals captured by a small and co-located sens- 

ing platform, without any depth sensor or any tracker applied 

before multi-modal fusion. AV3T estimates the 3D mouth 

position from face detections and models the likelihood in 

the camera’s spherical coordinates based on the uncertainties 

derived from the image-to-3D projection from the camera. 

Moreover, AV3T uses video to suggest the most likely speaker- 

height plane for acoustic map computation and, during mis- 

detections, uses a color-spatiogram-based generative model. 

The video-assisted SSL is more accurate than the 3D mouth 

estimates and less sensitive to errors in the hypothesized face 

size. We also contributed a new annotated audio-visual dataset, 

which we distribute to the research community. 

We have identified three main directions for future work. 

The first direction is an extension to tracking a varying number 

of targets. The second direction is modeling varying head 
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orientations, which influences the expected face detection size 

that is usually smaller as profile than when frontal. The 

third direction is making the audio processing more robust as 

speech signals primarily contain reflections that cause larger 

TDoA estimates and lead to overestimating the distance of the 

speakers from the sensing platform. 
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