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Reasoning about causes and effects naturally arises in the engineering of safety-critical systems. A
classical example is Fault Tree Analysis, a deductive technique used for system safety assessment,
whereby an undesired state is reduced to the set of its immediate causes. The design of fault man-
agement systems also requires reasoning on causality relationships. In particular, a fail-operational
system needs to ensure timely detection and identification of faults, i.e. recognize the occurrence of
run-time faults through their observable effects on the system. Even more complex scenarios arise
when multiple faults are involved and may interact in subtle ways.

In this work, we propose a formal approach to fault management for complex systems. We first
introduce the notions of fault tree and minimal cut sets. We then present a formal framework for the
specification and analysis of diagnosability, and for the design of fault detection and identification
(FDI) components. Finally, we review recent advances in fault propagation analysis, based on the
Timed Failure Propagation Graphs (TFPG) formalism.

1 Introduction

Modern complex engineering systems, such as satellites, airplanes and traffic control systems need to
be able to handle faults. Faults may cause failures, i.e. conditions such that particular components
or larger parts of a system are no longer able to perform their required function. As a consequence,
faults can compromise system safety, creating a risk of damage to the system itself or to the surrounding
infrastructure, or even a risk of harm to humans.

For these reasons, complex system implement fault management systems. There are different ways
to deal with faults. Fault avoidance tries to prevent design faults, through rigorous development method-
ologies. Not all faults, however, can be prevented, e.g. hardware faults may happen due to wear-out of
components. Fault tolerance, on the other hand, aims at making a system robust to faults that may occur
during system operation, by using, e.g., a redundant architecture, and by replicating critical components.
A fault tolerant system often implements some mechanisms to detect, identify and recover from, faults
– i.e. an FDIR (Fault Detection, Identification and Recovery) sub-system. In all cases, the design of
complex systems requires evaluating and quantifying the likelihood and the consequences of failures.
This process is called safety assessment. Classical techniques for safety assessment include Fault Tree
Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) [42].

In this paper, we introduce and review some recent work on the design of fault management systems.
Our work leverages the use of model-based design methodologies and formal verification and validation
techniques based on model checking [28, 4]. We begin by introducing Fault Tree Analysis in Sect. 2.
We then present a formal framework for the design of fault detection and identification components,
in Sect. 3. We discuss techniques to analyze fault propagation, based on the so-called Timed Failure
Propagation Graphs (TFPGs) formalism, in Sect.4. Finally, we conclude in Sect.5 by outlining some
future directions.
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Figure 1: An example fault tree.

2 Fault Tree Analysis

Fault Tree Analysis (FTA) [42] is a classical technique for safety assessment. It is a deductive technique,
whereby an undesired state (the so called top level event (TLE) or feared event) is specified, and the
system is analyzed for the possible fault configurations (sets of faults, a.k.a. basic events) that may cause
the top event to occur. Fault configurations are arranged in a tree, which makes use of logical gates
to depict the logical interrelationships linking such events with the TLE, and which can be evaluated
quantitatively, to determine the probability of the TLE. An example fault tree is shown in Figure 1.

Of particular importance in safety analysis is the list of minimal fault configurations, i.e. the Mini-
mal Cut Sets (MCSs). More specifically, a cut set is a set of faults that represents a necessary, but not
sufficient, condition that may cause a system to reach the top level event. Moreover, minimality implies
that every proper sub-set of a MCS is not itself a cut set.

Our approach to FTA is based on formal techniques, and specifically on Model-Based Safety Analy-
sis (MBSA) [21, 5, 12, 37, 18, 20, 16]. MBSA automates complex and error-prone activities such as the
generation of MCSs. This is done by looking for minimal fault assignments, in symbolic models where
selected variables represent the occurrence of faults [18]. Cut sets are assignments to such variables that
lead to the violation of the top level event. Formal verification tools for MBSA include xSAP [7].

Recent work [17] further improves existing algorithms, by providing a fully automated generation of
MCSs based on state-of-the-art IC3 techniques [22]. The approach is anytime, in that it is able to compute
an approximation (lower bound and upper bound) of the set of MCSs, by generating them for increasing
cut set cardinality. This approach in inspired by the layering approach of [2], but it improves over it in
several respects, such as scalability and convergence. The approach builds upon IC3-based parameter
synthesis [25], by providing several enhancements based on the specific features of the problem.

3 A Formal Framework for FDI

Fault Detection and Identification (FDI) is carried out by dedicated modules, called FDI components,
running in parallel with the system. The detection task is the problem of understanding whether a com-
ponent has failed, whereas the identification task aims to understand exactly which fault occurred. In
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general, detection and identification may also apply to conditions other than faults.
Typically, faults are not directly observable and their occurrence can only be inferred by observing

the effects that they have on the observable parts of the system. An FDI component processes sequences
of observations (made available by sensors) and triggers a set of alarms in response to the occurrence of
faults.

A formal foundation to support the design of FDI has been described in [14, 15], where a pattern
based language for the specification of FDI requirements is proposed. [14] focuses on synchronous
systems, whereas [15] extends the framework to include the asynchronous composition of the system
with the diagnoser.

The first ingredient for specifying an FDI requirement is given by the condition to be monitored,
called diagnosis condition. The second ingredient is the relation between the diagnosis condition and
the raising of an alarm. An alarm condition is composed of two parts: the diagnosis condition and the
delay. The delay relates the time between the occurrence of the diagnosis condition and the raising of the
corresponding alarm. The language supports various forms of delay: exact (EXACTDEL, after exactly n
steps), bounded (BOUNDDEL, within n steps) and finite (FINITEDEL, eventually).

The framework supports further aspects that are important for the specification of FDI requirements.
The first one is the diagnosability [40], i.e., whether the sensors convey enough information to detect
the required conditions. A non-diagnosable system (with respect to a given property) is such that no
diagnoser exists, that is able to diagnose the property. The above definition of diagnosability might be
stronger than necessary, since diagnosability is defined as a global property of the system. In order to deal
with non-diagnosable systems, a more fine-grained, local notion of trace diagnosability is introduced,
where diagnosability is localized to individual traces. This notion extends the results on diagnosability
checking from [26].

The second aspect is the maximality of the diagnoser, that is, the ability of the diagnoser to raise an
alarm as soon as possible and as long as possible, without violating the correctness condition.

The pattern-based language defined in [14, 15] is based on temporal logic. In particular, the patterns
are provided with an underlying formal semantics expressed in epistemic temporal logic [34], where
the knowledge operator is used to express the certainty of a condition, based on the available observa-
tions. The language is called Alarm Specification Language with Epistemic operators (ASLK). Diagnosis
conditions and alarm conditions are formalized using LTL with past operators, whereas the definitions of
trace diagnosability and maximality require epistemic logic. The full specification, covering the concepts
of (system and trace) diagnosability and maximality, is shown in Figure 2.

The formalization encodes properties such as alarm correctness (whenever an alarm is raised by the
FDI component, then the associated condition did occur), and alarm completeness (if an alarm is not
raised, then either the associated condition did not occur, or it would have been impossible to detect it,
given the available observations). Alternative approaches that define diagnosability as epistemic prop-
erties include [29] and [35], where the latter extends the definition of diagnosability to a probabilistic
setting. However, these works focus on finite-delay diagnosability only, and do not consider the notion
of trace diagnosability.

The framework described in [14, 15] covers several verification and validation problems. The valida-
tion problem aims to check whether the requirements capture the desired behaviors and exclude unwanted
ones. Known techniques for requirements validation [27] include checking their consistency, their com-
patibility with some possible scenarios, whether they entail some expected properties and whether they
are realizable. The verification problem, on the other hand, checks whether a candidate diagnoser fulfills
a given set of requirements. These checks can be done using a model checker for temporal epistemic
logic such as MCK [30] or, if the specification falls in the pure LTL fragment, using a model checker such



4 Causality and Temporal Dependencies in the Design of Fault Management Systems

Template Maximality = False Maximality = True

D
ia

g
=

Sy
st

em EXACTDEL
G(xAy→ Y n

β ) ∧ G(β → Xn
xAy) G(xAy→ Y n

β ) ∧ G(β → Xn
xAy) ∧

G(xKY n
βy→ xAy)

BOUNDDEL
G(xAy→ O≤n

β ) ∧ G(β → F≤n
xAy) G(xAy→ O≤n

β ) ∧ G(β → F≤n
xAy) ∧

G(xKO≤n
βy→ xAy)

FINITEDEL
G(xAy→ Oβ ) ∧ G(β → FxAy) G(xAy→ Oβ ) ∧ G(β → FxAy) ∧

G(xKOβy→ xAy)

D
ia

g
=

T
ra

ce

EXACTDEL
G(xAy→ Y n

β ) ∧ G(xAy→ Y n
β ) ∧

G( (β → Xn
xKY n

βy) → (β → Xn
xAy)) G( (β → Xn

xKY n
βy) → (β → Xn

xAy)) ∧

G(xKY n
βy→ xAy)

BOUNDDEL
G(xAy→ O≤n

β ) ∧ G(xAy→ O≤n
β ) ∧

G( (β → F≤n
xKO≤n

βy) → (β → F≤n
xAy)) G( (β → F≤n

xKO≤n
βy) → (β → F≤n

xAy)) ∧

G(xKO≤n
βy→ xAy)

FINITEDEL
G(xAy→ Oβ ) ∧ G(xAy→ Oβ ) ∧

G( (β → FxKOβy) → (β → FxAy)) G( (β → FxKOβy) → (β → FxAy)) ∧

G(xKOβy→ xAy)

Figure 2: ASLK specification patterns. Color key: cyan for diagnosability, red for maximality, orange for
correctness, yellow for completeness.

as NuSMV [24]. The framework, finally, addresses the problem of automated synthesis of a diagnoser
from a given specification. The idea is to generate an automaton that encodes the set of possible states
(called belief states) that represent the estimation of the state of the system after each observation. Each
belief state of the automaton is annotated with the alarms that are satisfied in all the states of the belief
state. The algorithm resembles the construction by Sampath [40] and Schumann [41]. It also extends
the results of [36], which did not consider maximality and trace diagnosability. Finally, we mention the
problem of synthesizing observability requirements, i.e. automatically discovering a set of observations
that is sufficient to guarantee diagnosability. This problem is investigated in [10], which also addresses
the issue of synthesizing cost-optimal sets of observations.

The framework has been evaluated in the AUTOGEF [3] and FAME [31, 9] projects, funded by the
European Space Agency, on a case study based on the EXOMARS Trace Gas Orbiter.

4 Timed Failure Propagation Graphs

Classical safety assessment techniques such as FTA and FMEA do not have a comprehensive support for
analyzing the timing of failure propagations, and make it difficult to obtain a global integrated picture of
the overall failure behavior of a system. This in turn makes it difficult to check whether a given FDIR
architecture is able to handle all possible faults and their propagation effects. To address these issues,
Timed Failure Propagation Graphs (TFPGs) [39, 1] have been recently investigated as an alternative
framework for failure analysis.

TFPGs are labeled directed graphs that represent the propagation of failures in a system, including in-
formation on timing delays and mode constraints on propagation links. TFPGs can be seen as an abstract
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Figure 3: An example TFPG. Dotted boxes are failure mode nodes, solid boxes discrepancy AND nodes,
and circles discrepancy OR nodes.

representation of a corresponding dynamic system of greater complexity, describing the occurrence of
failures, their local effects, and the corresponding consequences over time on other parts of the system.
TFPGs are a very rich formalism: they allow to model Boolean combinations of basic faults, intermedi-
ate events, and transitions across them, possibly dependent on system operational modes, and to express
constraints over timing delays. In a nutshell, TFPGs integrate in a single artifact several features that are
specific to either FMEA or FTA, enhanced with timing information.

An example TFPG is shown in Figure 3. Nodes represent failure modes and discrepancies (i.e.,
failure effects). Edges model the temporal dependency between the nodes; they are labeled with lower
and upper bounds on the propagation delay, and with labels indicating the system modes where the
corresponding propagations are possible. The semantics of TFPGs [11, 8] is such that a node is activated
when a failure propagation has reached it. An edge is active whenever the source node is active and the
system mode enables the propagation. Discrepancies include both OR and AND nodes. In the former case,
any of the incoming edges may trigger the propagation, whereas in the latter case all of them must be
active. If an edge is deactivated during the propagation, due to mode switching, the propagation stops.

TFPGs have been investigated in the frame of the FAME project [31, 9], funded by the European
Space Agency (ESA). Here, a novel, model-based, integrated process for FDIR design was proposed,
which aims at enabling a consistent and timely FDIR conception, development, verification and vali-
dation. More recently, [13, 11, 8] have investigated TFPG-based validation and formal analyses. In
particular, [13] focuses on the validation of TFPGs, seen as stand-alone models, using Satisfiability
Modulo Theories (SMT) techniques. Validation includes several criteria, such as possibility, necessity
and consistency checks, and TFPG refinement. [11] addresses TFPG validation (called behavioral val-
idation), and tightening of TFPG delay bounds, with respect to a system model of reference. In this
context, the TFPG is seen as an abstract version of the system model, and it is possible to check whether
the TFPG is complete, i.e. it represents all behaviors that are possible in the system. Behavioral vali-
dation is performed by discharging a set of proof obligations, using either a model checker for metric
temporal logic, or by reduction to LTL model checking. Finally, [8] develops algorithms for the au-
tomatic synthesis of a TFPG from a reference system model. The generated TFPG is guaranteed to be
complete with respect to the system model. Graph synthesis is carried out by using model checking
routines to compute sets of MCS and by simplifying the resulting graph by means of a set of static rules.
Parameter synthesis techniques are used for edge tightening.

TFPGs have also been applied to several case studies in the context of an ESA deep-space probe
design [6], whose mission is characterized by high requirements on on-board autonomy and FDIR. In
particular, TFPGs have been applied to the failure analysis of the “Solar Orbiter” (SOLO) satellite.
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5 Conclusions

In this paper, we have reviewed some recent work on the design of fault management systems. The
concepts of causality and temporal dependencies that arise in this setting have similarities with classical
theories of causality, such as counterfactual causality [33, 32]. Such theories are defined using structural
equations, but can be readily re-formulated for transition systems [38, 23]. A thorough investigation of
the implications of causality theories in the context of fault management systems is part of our future
work. We outline here some related work and possible directions for future investigation.

The notion of causality in FTA closely resembles the idea of identifying minimal sets of (necessary
and sufficient) causes as in classical causality theories. However, given an effect (TLE), FTA is interested
in such sets of causes (i.e., faults – identified beforehand) in all possible scenarios, whereas classical
theories focus on identifying the causes in a given scenario of interest. Moreover, in FTA a cause (i.e.,
MCS) need not be a sufficient condition – sometimes an additional condition on the environment might
be needed. Such condition resembles the notion on contingency in causality theories, and could be
represented using FTA gates (e.g., a pair inhibit gate/conditioning event [42]). In [38, 23], causality is
extended to encompass the notions of ordering and non-occurrence of events. This approach extends the
ordering analysis proposed in [19, 16].

FDI logic links effects with causes, similar to classical causality theories, but using observables only.
An alarm, in this context, corresponds to an effect or, more precisely, to a signal which is triggered by
the detection/identification of a given effect. Given a fault F and an alarm A, FDI correctness implies
that F is (part of) a cause of A, whereas FDI completeness does not necessarily imply that F is a cause
of A, since false alarms are possible. However, correctness and completeness together imply that F is
the (unique) cause of A. Finally, diagnosability is related to the realizability of FDI logic, and trace
diagnosability corresponds to diagnosability in a specific scenario.

Finally, TFPG analyses have similaries with FTA – in fact, TFPG synthesis is built on top of MCS
computation. However, TFPGs are more expressive multi-node networks, enriched with time bounds and
modes, and nodes may include dependent effects (dicrepancies). A propagation in a TFPG is necessary,
in the sense that a discrepancy activation implies the propagation through at least one input propagation
link, whereas a propagation is inevitable in the sense that a propagation implies the activation of the
correspondent discrepancy. Inevitability may be enforced using time bounds and/or modes.

As part of our future work, we want to analyze more closely the difference between causality and
temporal dependencies/temporal correlation. In some scenarios of interest, motivated by practical case
studies, it appears that temporal correlation between causes and different effects of the same cause, may
lead to identifying a temporal-correlated effect as part of the causes of the effect of interest. Distinguish-
ing causality from temporal correlation would require going beyond the trace-based semantics. We are
currently looking for meaningful and sound definitions that can encompass such cases.

Acknowledgments The results presented in this paper are a joint work with several people, including
Benjamin Bittner, Alessandro Cimatti, Marco Gario and Stefano Tonetta.
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