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Abstract. Improving the interpretability of multivariate models is of
primary interest for many neuroimaging studies. In this study, we present
an application of multi-task learning (MTL) to enhance the interpretabil-
ity of linear classifiers once applied to neuroimaging data. To attain our
goal, we propose to divide the data into spatial fractions and define the
temporal data of each spatial unit as a task in MTL paradigm. Our
result on magnetoencephalography (MEG) data reveals preliminary ev-
idence that, 1)dividing the brain recordings into spatial fractions based
on spatial units of data and 2)considering each spatial fraction as a task,
are two factors that provide more stability and consequently more inter-
pretability for brain decoding models.

1 Introduction

Cognitive neuroscientists are generally concerned with discovering answer of
where, when and how a certain brain activity contributes to a particular cog-
nitive process. Hence, a multivariate analysis of recorded brain activity, e.g.,
Electroencephalography (EEG), Magnetoencephalography (MEG), or functional
Magnetic Resonance Imaging (fMRI), is considered interpretable if it can find
accurate and stable answer to where, when and how questions. Therefore, im-
proving the interpretability of multivariate analysis is of high interest in the
brain imaging literature [24].

Nowadays, mass-univariate hypothesis testing methods are widely employed
to make inference on neuroimaing data [11, 17, 18]. Despite popularity of these
univariate methods, they are generally unable to spot complex interactions be-
tween different brain areas [7]. Recent studies tried to find multivariate alter-
natives to univariate hypothesis testing [16, 20], however, classification-based
approaches are still the most popular tools for multivariate analysis of neu-
roimaging data [9]. These approaches go under the name of brain decoding and
generally use linear classifiers to find evidence for stimulus related information
in neuroimaging data. The weights of linear classifiers provide quantitative mea-
surements to assess the relation between each dimension of data, i.e., features,
and the underlying cognitive task. However, these approaches suffer from lack



of interpretability due to the high dimensionality of data and high correlation
between features [3, 12,13].

Currently, there are two main directions in neuroimaging literature to im-
prove the interpretability of multivariate linear models. The first concentrates on
model selection in order to increase the stability of brain decoding model. This
approach suggests taking into account the stability of models in model selec-
tion procedure. For example, [22] computed the correlation between weights of
models across different cross-validation runs, and utilized it besides accuracy for
model selection in joint accuracy-reproducibility space. Analogous approaches
have been proposed in [1, 4, 6, 26].

The second approach focuses on the underlying mechanism of regularization
to enhance the interpretability of weights of classifier. The main idea is two-fold:
1)customizing the regularization terms to address the ill-posed nature of brain
decoding problems (where the number of samples are much less than the number
of features); and 2)to incorporate structural or functional prior knowledge into
the regularization procedure. Group Lasso [29] and total-variation penalty [25]
are tow effective methods in this direction [23, 28]. As an example in the neu-
roimaging context, [9] by modifying the regularization term of logistic regression,
proposed a group-wise regularization term for finding sparse and easy to interpret
models. Elsewhere, [10] used total-variation penalty to inject a spatial segmen-
tation prior into the sparse model with Lasso penalty. Similar efforts have been
made in [3, 12,27].

Despite the mentioned efforts, recently [13, 14] questioned the interpretabil-
ity of linear discriminative models, i.e., weights of linear classifiers, due to the
contribution of noise to the amplitude of weights. To address this problem, they
proposed a procedure to transform discriminative models into equivalent gener-
ative models by multiplying linear classifier weights by the covariance matrix of
the input features (see 2.2). Their experiments on simulated, EEG, and fMRI
data illustrated that, whereas direct interpretation of linear classifier weights
may cause misinterpretation of results, their proposed solution effectively solves
the problem.

In this study, we approach the problem of interpretability by employing a
multi-task learning (MTL) framework in order to improve the stability and as
a result the interpretability of brain decoding models. We are willing to stress
two key advantages of MTL over single-task learning in brain decoding interpre-
tation: 1)reformulating the brain decoding problem into a multi-task problem,
by defining each spatial unit of data as a task, provides more stability for brain
decoding models; 2)learning the pattern of activities simultaneously over spatial
units increases the performance of decoding compared to the single-task learning
where a number of classifiers are trained separately on each spatial unit.

The rest of this paper is organized as follows: in section 2 we introduce multi-
task elastic-net and we show how a brain decoding problem can be recast into
the MTL paradigm. Then, in section 3, we present our experimental results on
an MEG dataset by comparing the performance and the stability of MTL with
single-task learning. Finally, section 4 concludes this paper.



2 Methods

2.1 Notation

Let (X,Y ) = {(x1, y1), . . . , (xn, yn)} ∈ Rn×p × Nn be the n samples of neu-
roimaging data, e.g., MEG data, where each xi is a p dimensional vector of
spatio-temporal features throughout presentation of stimulus of class yi. The
goal of brain decoding is to find a function Φ such that Y = Φ(X). In the linear
case Y = XW where W ∈ Rp represents the weights associated by a linear
classifier to every corresponding element of xi.

2.2 From Classifier Weights to Activation Patterns

Recently, [13] showed the weights of a linear classifier, i.e, W , are not neuro-
physiologically interpretable. They illustrated that any interpretation based on
W can cause wrong conclusions with respect to the spatio-temporal source of sig-
nal of interest. As a solution, showing that for every discriminative model there
exists an equivalent generative model, they proposed a procedure to transform
the weights of linear classifiers to activation patterns A:

A = ΣXWΣ−1
Ŝ

(1)

where ΣX and Σ−1
Ŝ

represent covariance matrix of X and Ŝ, respectively, and

Ŝ is latent factor representing estimated neural sources.
In fact, an activation pattern is the solution of the equivalent generative

model that encodes the strength and polarity of the activity of interest in each
dimension of data. Therefore, there is a clear physiological interpretation for
activation patterns. In the binary classification setting where there is just one
latent factor Ŷ estimated by the model, the Eq.1 can be rewritten as:

A =
ΣXW

σ2
Ŷ

∝ ΣXW (2)

2.3 Multi-task Elastic-net

Multi-task learning (MTL) has recently received particular attention in machine
learning and computer vision literature [30]. MTL tries to learn the underlying
relation between tasks simultaneously by extracting common information across
them. It has been shown that, in some applications, the simultaneous learning
procedure of MTL is advantageous over learning each task independently [8].
Furthermore, splitting a single-task problem into a multi-task problem can ef-
fectively change the relative size of samples to features for each task. Thus MTL
can provide higher stability by reducing the degree-of-freedom of the solution
space.

In this study, we first define a spatial fraction as a time-series of each spatial
unit of neuroimaging data. For example in the case of MEG data, the time-
series measured by each MEG sensor is defined as one spatial fraction of data.



Then, we define each spatial fraction as a task in the MTL framework. We
consider the MTL scenario of having the same outputs and different inputs
for each task [2, 8]. Thus, a brain decoding problem can be reformulated as
(X,Y ) = {(X1, Y ), . . . , (Xτ , Y )}; where each pair of (Xi, Y ) defines a traditional
brain decoding problem (see 2.1) on just one spatial fraction of data, Xi ∈ Rn×p∗

represents n samples of data at ith spatial fraction, τ represents number of tasks;
and p∗ = p/τ is the number of temporal features at each spatial fraction.

Using this new representation of brain decoding, the multi-task elastic-net
(MTEN) optimization problem, as an instance of MTL, can be formulated as
follows [5, 31]:

ŴMTEN = argmin
W∈Rp∗×τ

τ∑
i=1

∥∥XiW i − Y
∥∥2
F

+ ρ1 ‖W‖1 + ρ2 ‖W‖2F (3)

where ‖.‖1 and ‖.‖2F are representing the l1 and l2 penalties respectively, and
W ∈ Rp∗×τ is the MTEN weight matrix. The regularization parameters ρ1 and
ρ2 control sparsity and smoothness over temporal patterns of spatial fractions,
respectively.

The MTEN optimization problem can be considered as an extension of single-
task regression with elastic-net regularization [32]. A general specification of
MTEN is its shared l1 and l2 penalties among all tasks. Furthermore, in this
setting, the number of temporal features of each task (p∗) is reduced by factor of
the number of tasks (τ) with respect to that of the original feature space (p). In
practice and using common down-sampling techniques even p∗ < n is achievable.
Therefore, the input data of each task can be a full rank matrix.

To compute the final prediction of the MTL model, we use a simple averaging
mechanism among the tasks. We first define a decoding-related task (DRT) set D,
as a set of tasks which provide decoding performance over a certain threshold φ in
the training-set. The threshold φ can be decided using nested cross-validation or
can be fixed based on some heuristics. After finding DRT members, to compute
the final prediction for every sample in the test-set, we compute the mean over
predictions of classifiers in D.

Furthermore, considering the fact that decoding models with below chance
performance are not interpretable under any circumstances, those spatial frac-
tions that are not effective in decoding should be filtered out from the joint
activation patterns. Therefore, we merely use the weights of classifiers in D to
compute activation patterns of MTEN. The activation patterns associated to
unrelated tasks are set to zero when constructing the full spatio-temporal acti-
vation pattern A. To compute the activation pattern of each member of DRT
set Ai

∗
(i∗ ∈ D), we adopt Eq.2 as follows:

Ai
∗
∝ ΣXi∗W i∗ (4)



3 Experiments

3.1 Material and Experimental Setup

We tested the proposed method on the first 5 subjects of an MEG dataset where
visual stimuli consisting of famous faces, unfamiliar faces and scrambled faces
are presented to subjects. The original dataset consists of 16 subjects and it
is described in [15]1. This dataset is also used for DecMeg2014 competition2.
Same as [19], we created a balanced face vs. scramble dataset by drawing at
random from the trials of famous and unfamiliar faces in equal number to that
scrambled faces. The raw data is high-pass filtered at 1Hz, down-sampled to
250Hz, and epoched from 200ms before the stimulus onset to 800 ms after the
stimulus. Thus each trial has 250 time-points for each of the 306 MEG sensors
(102 magnetometers and 204 planar gradiometers)3.

To illustrate the advantage of MTEN in improving the interpretability of
brain decoding model, we conduct three different experiments. These three set-
tings help us to examine the impact of division of data into spatial fractions and
employing the MTL paradigm separately:

1. We first pool all temporal data of 306 MEG sensors into one vector (i.e., we
have 250*306=76500 features for each sample) and then we use the linear
regression with elastic-net regularization to solve the brain decoding problem
(we refer to this experiment as EN).

2. We divide the data into spatial fractions, then we employ the linear regres-
sion with elastic-net regularization to train a model on each spatial fraction
separately (we refer to this experiment as STEN).

3. After dividing data into spatial fractions, we use MTEN to train the decoding
model (we refer to this experiment as MTEN).

For selecting DRT members in the second and third experiments , the threshold φ
(see 2.3) is set to µperf +σperf , where µperf and σperf are respectively mean and
standard-deviation of performances computed over all spatial fractions (tasks) on
the training set. In all settings, the best values for ρ1 and ρ2 were decided using
nested cross-validation (CV) to ensure unbiased error estimation [21]. In the
inner loop of CV, a grid search on [0, 0.001, 0.01, 0.1, 1, 10, 50, 100] is used to find
optimal values for both ρ1 and ρ2. MALSAR [31] toolbox is used for training
the models. The MATLAB code for all experiments is available at https://

github.com/smkia/MTL_Interpretation.

1 The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/

rik.henson/wakemandg_hensonrn/
2 The competition data are available at http://www.kaggle.com/c/

decoding-the-human-brain
3 The preprocessing scripts in python and MATLAB are available at: https://

github.com/FBK-NILab/DecMeg2014

https://github.com/smkia/MTL_Interpretation
https://github.com/smkia/MTL_Interpretation
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
http://www.kaggle.com/c/decoding-the-human-brain
http://www.kaggle.com/c/decoding-the-human-brain
https://github.com/FBK-NILab/DecMeg2014
https://github.com/FBK-NILab/DecMeg2014


3.2 Results and Discussions

Fig.1 compares the performance and the stability of EN, STEN, and MTEN
experiments. The performance of classifiers is measured based on the area under
the ROC curve (AUC). The stability is quantified by computing the pair-wise
correlation between weight matrices across 10 folds of CV (see [22]). The bars
and the error-bars are showing the mean and the standard deviation of AUC
and correlations over 10 folds of CV.

The annotations below each group of bars are showing the result of two-
sample t-test between each pair of benchmarked methods, where −, ∗, and ∗∗
are representing not significant, significant with p−value < 0.05, and significant
with p − value < 0.001, respectively. All the results are corrected for multiple-
comparison using Bonferroni correction. Excluding the second subject which
shows completely different behaviour, Fig.1 highlights the following points:

1. While MTEN and EN have more or less the same performance, MTEN
provides significantly better stability than EN.

2. STEN and MTEN provide more stability than EN, supporting the idea that
dividing the data into spatial fractions improves the stability of models by
reducing the degree of freedom of solution space.

3. Despite their similar stability, MTEN provides better performance than
STEN illustrating the advantage of learning all tasks simultaneously in MTL
framework.

Fig. 1: Comparison between performance (upper diagram) and stability (lower
diagram) of EN, STEN, and MTEN for 5 subjects.



Fig. 2: Spatio-temporal activation patterns of 2 subjects computed by EN, STEN,
and MTEN.

Fig. 2 elaborates more the advantage of MTL paradigm in improving the in-
terpretability of results. This figure shows mean activation patterns of MTEN,
STEN, and EN over 10 folds of CV for two subjects (other subjects show similar
behaviour). These activation patterns are computed using Eq.2 in EN case, and
using Eq.4 in STEN and MTEN cases. The horizontal and vertical axes repre-
sent time and sensors dimensions respectively, and the dashed line shows the
stimulus onset. Comparison between these activation patterns suggests:

1. MTEN and STEN provide more sparse solution than EN.
2. Activation patterns of MTEN show no stimulus related activity before stim-

ulus onset, in contrast to EN. Considering the experiment design used for
data acquisition (see 3.1), any discriminating activity before stimulus onset
has no scientific interpretation. These activations before stimulus in EN case
can be consequence of overfitting of the model to noise.

3. Pre-stimulus activation in EN case rises the question that the transformation
proposed by [13] might not guarantee the interpretability of brain decoding
models, and the regularization strategy beside learning algorithm are still
playing important roles.

4 Conclusion

In this paper, we introduced a new application of MTL to enhance the inter-
pretability of brain decoding models. Our results on an MEG dataset show that
recasting the brain decoding problem into the MTL framework is an effective
technique to achieve more stable and consequently more interpretable models.
These characteristics of the proposed method makes it more appropriate for
making inference in cognitive neuroscience studies. Replacing elastic-net with a
new penalization method in the MTL paradigm can be considered a possible
future extention for our work.
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