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Abstract

This paper presents an evaluation of the performance of software virtual routers, by analysing the packet

forwarding capabilities of the Linux kernel running inside a KVM virtual machine and the performance of

more advanced architectures based on virtual routers aggregation. More specifically, the performance impact

of various tuning and configuration options is evaluated with focus on the virtual router interconnection

mechanism, the algorithm used for scheduling the virtual router tasks, the number of CPU cores and

their CPU bindings. The presented results show how to properly configure the virtual router components to

improve the virtual routing performance and how to control the performance by using proper CPU schedulers

for desired quality of service. Moreover, some modular architectures which can better exploit the available

CPU cores are also presented, showing how to reach performance similar to the ones of non-virtualised

software routers.

1. Introduction

Software Routers (SRs), i.e, routers implemented by software running on commodity off-the-shelf hard-

ware, became in recent years an appealing solution compared to traditional routing devices based on custom

hardware. SRs’ main advantages include cost (the multi-vendor hardware used by SRs can be cheap, while

custom equipments are more expensive and imply higher training investment), openness (SRs can be based

on open-source software, and thus make use of a large number of existing applications) and flexibility. Since

the forwarding performance provided by SRs has historically been an obstacle to their deployment in pro-

duction networks, recent research works focused on increasing SRs performance by either using massively

parallel hardware such as a GPU to process packets [1], allowing the routing software to directly access

the networking hardware (thus eliminating the overhead introduced by the OS kernel) [2], or using other

similar techniques to improve the forwarding performance of monolithic routers. An orthogonal approach

to improve SR performance can be based on the aggregation of multiple devices to form a more powerful
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routing unit like the Multistage Software Router [3], Router Bricks [4] and DROP [5]. While by improving

the performance of a single routing device it is possible to reach the forwarding speed of multiple tens of

Gigabit per second [1], the aggregation of multiple routing units can allow the forwarding speed to scale

almost linearly with the number of used devices [3].

As recognised by several researchers [6, 7], virtualisation techniques could become an asset in networking

technologies, improving SRs flexibility and simplifying their management. As an interesting example, the live

migration capability provided by some Virtual Machines (VMs) could be adopted for consolidation purposes

and/or to save energy. Moreover, running a SR in a VM allows to dynamically adapt the forwarding

performance of the (virtual) device to the workload by renting virtual resources instead of buying new

hardware. This feature is especially useful when the network traffic has a high variance, thus a high

processing power might be necessary only for short periods. Virtualisation can also simplify the management

of a SR, and improve its reliability: for example, migration of VMs during maintenance periods can be

implemented and faster reaction to failures should be expected by booting new VMs on general purpose

servers. Finally, the same physical infrastructure can be sliced and shared among different users to improve

hardware efficiency.

Obviously, the usage of Virtual Software Routers (VSRs) might increase the complexity of the routing

software: for example, the communications between VMs and the physical nodes hosting them result in

complex interactions between hardware and VMs, which could easily compromise VSR’s performance. This

paper focuses on analysing such interactions to identify and remove various performance bottlenecks in the

implementation of a VSR. Since such an investigation is easier when the behaviour of and the interaction

mechanisms among all the software components (routing software, virtual machine software, operating

system kernel, etc...) are known, this work focuses on an open-source virtualisation environment (KVM,

the Kernel-based Virtual Machine [8]) which permits to easily analyse the VM and SR behaviour to identify

performance bottlenecks. Indeed, since KVM is tightly integrated into Linux, it is possible to exploit all

the available Linux management tools. Furthermore, KVM has been included into the Linux mainline from

2.6.20 on.

VSR performance can be improved by carefully tuning various system parameters such as those related to

the connection mechanisms among VMs, threads priorities and CPU affinities. Some preliminary results [9]

show that a proper configuration and optimisation of the virtual routing architecture and the aggregation

of multiple VSRs (as suggested by the multistage software router architecture [3]) permit to forward about

1200kpps (with 64 bytes packets) in a commodity PC, close to the physical speed of a Gigabit Ethernet.

This paper extends the preliminary results investigating the bottlenecks for reaching the full line rate, by

comparing different technologies for interfacing the VMs with the physical hardware, and by showing how

a proper CPU scheduler can allow to control the performance of a VSR (and to limit its CPU usage).
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2. Virtualisation Technologies

VSR performance is obviously affected by the amount of computational resources i) available on the

physical node hosting the VSR and ii) needed by the VSR to route packets. Computational resources are

mainly used by:

1. the forwarding code in the SR (named guest because it is the code running inside a VM). This code

can be the packet forwarding subsystem of the Linux kernel, or Click, or some other kind of SR code;

2. the physical machine hosting the VM (called host) to move packets among physical interfaces, virtual

switches, and virtual interfaces of guests.

Host to/from VM packet forwarding (item 2) can be executed in the OS kernel, in an hypervisor, or

in some user-space component (typically, the Virtual Machine Monitor - VMM), depending on the specific

virtualisation architecture.

If the VSR is implemented using a “closed” virtualisation architecture such as VMWare [10], it is not

easy to understand how much CPU time is consumed by the VMM, by the guest, or by the host OS kernel.

Hence, in this paper an open-source virtualisation architecture is used. The two obvious candidates are

Xen [11] and KVM [8]. Since the KVM architecture is more similar to the standard Linux architecture

(hence, it does not require to learn new profiling and performance evaluation tools), it has been selected

for running the experiments presented in this paper. KVM is based on a kernel module, which exploits

the virtualisation features provided by modern CPUs to directly execute guest code, and on a user-space

VMM, based on QEMU [12], which virtualises the hardware devices and implements some virtual networking

features.

The most relevant feature for VSRs provided by the user-space VMM is the emulation of network

interfaces, because CPU virtualisation is not an issue, as KVM allows guest machine instructions to run

at almost-native speed. When a packet is received, the VMM reads it from a device file (typically the

endpoint of a TAP device) and inserts it in the ring buffer of the emulated network card (the opposite

happens when sending packets). When emulating a standard network interface (such as an Intel e1000

card), the VMM moves packets to/from the guest by emulating all hardware details of a real network card.

This process is time consuming, easily causing poor forwarding performance, especially when considering

small packets, and/or high interrupt rates. This issue can be addressed by using virtio-net1, which does

not emulate real hardware but uses a special software interface to communicate with the guest (that needs

special virtio-net drivers). Thus, the overhead introduced by emulating networking hardware is reduced,

and forwarding performance is improved. The para-virtualised NIC is based on a ring of buffers shared

between guest and VMM, which can be used for sending/receiving packets. Guest and VMM notify each

1virtio-net is a para-virtualised I/O framework for high speed guest networking [13]
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Figure 1: The VSR packet path comparison between virtio-net (left) and vhost-net (right).

other when buffers are empty/full, and the virtio-net mechanism is designed to minimise the amount of

host/guest interactions (by clustering the notifications, and allowing to transfer data in batches).

When using virtio-net, the user-space VMM is still responsible for moving data between the (endpoint

of the) TAP interfaces and the virtio-net ring buffers. Hence, when a packet is received, as depicted in

the left side of Fig. 1:

1. the host kernel notifies the user-space VMM that a new packet is available on the TAP device file;

2. the VMM is scheduled, reads the available packets from the device file and copies them to the

virtio-net ring;

3. the VMM notifies the guest and execution returns to the kernel;

4. the guest receives a virtio-net interrupt, starts executing and can receive and process the packet.

In summary, the large number of switches between host kernel, VMM, and guest, can introduce overhead

and decrease virtual router performance. This problem can be solved by using vhost-net2, which is a helper

mechanism provided by the host kernel, able to directly copy packets between the TAP interface and the

virtio-net ring buffers. Thus, the copy is not performed by the user-space VMM, but by a dedicated kernel

thread (referred as “the vhost-net kernel thread” from now) and some context switches can be avoided.

As a result, forwarding performance of the guest are largely improved.

When using vhost-net, the user-space VMM does not need to execute when the guest sends and receives

network packets, and the CPU time consumed by the host to move packets is not used by the user-space

VMM but by the vhost-net kernel thread (notice that there is one vhost-net kernel thread per virtual

interface), as shown in the right hand side of Fig. 1. The guest code executes in a different thread, named

vcpu thread (notice that there is one vcpu thread per virtual CPU).

2http://www.linux-kvm.org/page/VhostNet
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More details about how packets are moved between physical and virtual interfaces are available in the

Appendix.

3. Optimising a Monolithic Virtual Router

To understand how the various mechanisms described in the previous sections affect the performance of

a VSR, and how to correctly configure the host and the VMM to optimise the virtual routing performance,

a set of experiments were performed on the simplest possible VSR implementation first. The VSR used

for these experiments is composed by a Linux-based OS running inside a KVM-based VM, and is referred

to as monolithic VSR in the rest of this paper. Thanks to the fact that KVM is an open virtualisation

architecture, it is possible to identify the performance bottlenecks of a VSR and to understand how to

exploit existing resources to tune and improve the virtual routing performance.

To simplify the setup, these first experiments are based on a testbed composed by a traffic generator and

one VSR node. To verify that the results are not strictly dependent on a specific hardware, the experiments

were repeated using different hardware. The results obtained using different hardware (different kinds of x86

CPUs, different amounts of RAM, and different kinds of Intel-based Gigabit Ethernet cards) are consistent:

although there is some performance difference at the peak rate, the qualitative behaviour is the same in all

the different setups. Hence, for the sake of simplicity, the paper reports the results obtained using an Intel

Xeon quad core E5-1620 running at 3.66GHz.

3.1. Exploiting CPU Cores

In the first experiment, the performance of a monolithic VSR is measured when forwarding small packets

(64 bytes long). Fig. 2 shows the forwarding packet rate (as a function of the input packet rate) of a 3.4

Linux kernel running inside qemu-kvm 1.1.0. Each experiment has been repeated 10 times, and the 99%

confidence intervals are also reported. Since this CPU has multiple cores, the VSR was tested while restricted

to use a single core (all interrupts are processed on the first CPU core, where the KVM vcpu thread and the

vhost-net kernel thread also run), when restricted to 2 cores (interrupt processing and threads execution

on the first 2 CPU cores), and when all 4 CPU cores are available (only 3 CPU cores are used: one for

interrupt processing, one for the KVM vcpu thread, and one for the vhost-net kernel thread).

Using multiple cores improves VSR performance, as shown in Fig. 2. However, the performance im-

provement can be achieved only if the vcpu thread and the vhost-net kernel thread are properly scheduled.

For example, increasing the number of used CPU cores from 2 to 4 resulted in no significant performance

improvement if the two threads were left free to execute on any CPU core (“4 cores, no bind” line). This is

probably due to a deficiency in the load balancer used by the Linux CPU scheduler, which seems to ignore

the CPU loads caused by interrupt processing. This issue was addressed by setting the affinity of the two
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Figure 2: Forwarding performance of a monolithic VSR while increasing the number of CPU cores.

threads to cores 1, 2, and 3, so that they are not executed on core 0, which is busy with interrupt processing.

The results achieved by using this assignment are shown in the “4 cores, affinity” line. More strict CPU

bindings for the vcpu and vhost-net threads (allowing the vcpu thread to execute only on core 1, and

the vhost-net kernel thread to execute only on core 2) allowed to reduce the variance (and the confidence

interval), but did not have any particular impact on the average performance (see the “4 cores, bind” line).

Notice that even when 4 CPU cores are made available (and top shows a high amount of idle CPU time in

the system), the virtual router is not able to forward more than 900kpps.

By analysing the system in overload (for input rates larger than 900kpps), it becomes clear that the

bottleneck is the vhost-net kernel thread, which consumes all the CPU time on a core (see Sec. 3.3).

Since the issue is that a single thread (the vhost-net thread) needs more than 100% of the CPU time of a

single core, playing with CPU bindings cannot help anymore, because a single thread cannot simultaneously

execute on 2 different CPU cores. Thus, it is not possible to exploit the huge amount of idle time on other

cores.

3.2. Setting the Thread Priorities

When some of the threads implementing the monolithic VSR are executed on the same CPU core, their

scheduling priorities can have a huge impact on virtual routing performance. Fig. 3 shows the results

achieved with a monolithic VR when the 2 important threads implementing the VR (the KVM vcpu thread

and the vhost-net kernel thread) are bound to the same CPU core. The two threads are scheduled through

fixed priorities by using the SCHED FIFO scheduling class, changing their priority order between experiments.

Notice that interrupt handlers are executed on a different CPU core, and this is a key difference with respects
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Figure 3: Forwarding performance of a monolithic VSR with different priorities for the vcpu and vhost-net threads (vcN means

vcpu with priority N, vhN means vhost-net with priority N).

to the “1 core” line of Fig. 2 (hence the different behaviour in overload). For reference, the performance

curve obtained scheduling vcpu and vhost-net on 2 separate cores (equivalent to the “4 cores, bind” curve

in Fig. 2) is also shown in the figure.

The worst forwarding performance is achieved when the vhost-net kernel thread has a higher priority

than the vcpu thread (“vc98,vh99” line). This happens because the vhost-net is responsible for both

moving the received packets from the physical NIC to the VM and moving back the routed packets from

the VM to the physical NIC. If this thread has a higher priority than the vcpu thread, most of the core’s

time is spent moving to the VM input packets that the vcpu thread is not able to route back (because it

is starved by vhost-net). On the contrary, a higher priority for the vcpu thread can guarantee that each

packet moved from the physical NIC to the VM by vhost-net can be correctly routed back, hence the peak

throughput increases (see the “vc99,vh98” line). However, when the system is overloaded the vcpu thread

risks to starve the vhost-net kernel thread, so an increasing number of the routed packets cannot be moved

back to the physical NIC. This is why the performance decrease in overload. As a result, the best forwarding

throughput is obtained when assigning the same priority to the two threads (“vc99,vh99” line).

3.3. Multiple vhost and vcpu Threads Performance

By looking at how the various threads implementing a VSR use the CPU cores, it is possible to understand

what happens when the peak forwarding rate is reached, and how to improve the virtual routing performance

in this case.

Fig. 4 shows the CPU utilisation caused by a monolithic VSR when the network interrupts are handled

on core 0, the vcpu thread executes on core 1, and the vhost-net kernel thread executes on core 2 (line “4
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Figure 4: CPU utilisation detailed per core and per type of load, as a function of input packet rate [pps], for a monolithic VSR

with 1 vhost-net kernel thread (bound to core 2) and 1 vcpu thread (bound to core 1).

cores, bind” in Fig. 2). Results are detailed per CPU core, showing how utilisation changes as a function of

input packet rate (shown on the horizontal axis in pps). sys represents the percentage of time consumed by

threads executing in kernel space (for example, the vhost-net kernel thread, or a user thread executing a

system call), irq represents the percentage of time consumed by interrupt handlers (in this case, the handlers

of the network interrupts), and guest represents the percentage of time consumed by KVM executing guest

code, i.e. the vcpu thread. The peak rate is reached when the vhost-net kernel thread consumes almost

all of the execution time on core 2. Hence, the performance limit is due to a vhost-net overload. As

a consequence, it can be conjectured that the performance can be increased by using 2 vhost-net kernel

threads and executing them on 2 cores (core 2 and core 3). This has been verified by running some additional

tests with different numbers of threads bound to various CPU cores.

Fig. 5 shows the monolithic VSR performance when using a different number of threads (and, as a

consequence, a different number of CPU cores), and Figs. 6 and 7 show the CPU utilisations in these

experiments. Notice that the “1 vhost 1 vcpu” line is the same as the “4 cores, bind” line of Fig. 2.

These figures show that splitting the vhost-net kernel thread into two threads (one for packets reception,

the other one for transmission) permits to exploit additional CPU cores, increasing the peak throughput to

more than 900kpps. By looking at Fig. 6, it becomes clear that when two vhost-net kernel threads are

used, the virtual routing performance is limited by the vcpu thread. Interrupt handling is also near the

limits, almost saturating Core 0.

Furthermore, increasing the number of vcpu threads without creating additional vhost-net kernel

threads does not improve the virtual routing performance, because the performance bottleneck remains
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Figure 5: Forwarding performance for a monolithic VSR with different vhost and vcpu thread(s).
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Figure 6: CPU statistics for the standard VSR, with 2 vhost and 1 vcpu threads
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Figure 7: CPU statistics for the standard VSR, with 1 vhost and 2 vcpu threads

in the single vhost-net kernel thread, as shown in Fig. 7. The additional vcpu thread even decreases the

performance in overload, probably because of the overhead (a more complex SMP VR architecture and more

context switches) introduced by the additional thread.

3.4. Interconnection Mechanisms

As shown in the previous experiments, the limitations to the maximum packet forwarding rate by a VSR

are often due to an overload of the vhost-net kernel thread, which is responsible for moving packets between

the physical interface and the virtual one (and vice versa). Hence, it might be interesting to understand how

the different mechanisms that can be used to connect the physical and virtual interfaces affect virtual routing

performance.3 This investigation has been performed by running a new set of experiments, comparing a

Linux software bridge (br device) plus TAP interface, openvswitch (plus a TAP interface), the Linux macvtap

interface and netmap [2], a novel mechanism providing high performance in user-space networking.

The results of this comparison are shown in Fig. 8, and show that macvtap tends to perform better than

the other mechanisms, followed by openvswitch, netmap and the software bridge. The better performance

provided by macvtap are probably due to the fact that it combines into a single operation some of the

data movements performed in the bridge and openvswitch configurations. Indeed, when using two separate

bridge (either the “standard” software bridge or openvswitch) and TAP devices, packets are moved from the

physical NIC to the bridge device and then from such a device to the TAP interface. Openvswitch performs

better than the standard software bridge because it has been optimised to reduce the overhead introduced

by the Linux bridge device (see also [14]).

3In the previous experiments, the macvtap mechanism provided by the Linux kernel has been used.
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Figure 8: Forwarding performance comparison in KVM using different interconnection mechanisms.

Summing up, macvtap is less flexible than the other solutions but performs better and should be preferred

when building a high performance monolithic VR.

While the performance difference between macvtap and the bridge-based solutions (standard bridge and

openvswitch) were expected, the netmap results seem to contradict the original netmap papers (which show

that netmap can achieve better performance than the standard mechanisms implemented in Linux). Hence

a more accurate investigation has been performed to understand the reasons for this unexpected behaviour.

Notice that netmap has a maximum throughput around 650kpps, the virtual routing performance do not

degrade when the input packet rate increases further, and confidence interval is quite small even in overload.

On the other hand, macvtap has a peak forwarding rate of about 900kpps, performance slightly decrease

as the input packet rate further increases, and the confidence interval in overload is larger. Hence, netmap

seems to have a lower peak rate with respect to the macvtap configuration, but has a better behaviour in

overload. Analysing the CPU utilisation with top, the source of this strange behaviour become clear. The

key point is that the macvtap configuration used vhost-net for moving packets from the macvtap interface

to the virtio-net device inside the VM. Since vhost-net creates an additional kernel thread, the macvtap

configuration is able to use 3 CPU cores (see Fig. 4), while netmap never uses more than 2 CPU cores.

Indeed, vhost-net can distribute at least 3 activities (interrupt handling, the vhost-net kernel thread, and

the vcpu thread) on the CPU cores, while netmap only uses 2 active entities: the main qemu thread, which

implements interrupt handling and moves the network packets in the virtio ring, and the vcpu thread

(which works as in the vhost-net setup). Hence, netmap cannot take advantage of additional CPU cores.

To verify these findings, the experiment was repeated comparing netmap with a macvtap configuration in

which only 2 CPU cores are used. The results are reported in Fig. 9, which compares the performance
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Figure 9: Forwarding performance comparison of a monolithic VSR using vhost-net and netmap configuration.

of macvtap (using vhost-net) with 2 and 4 CPU cores with the performance achieved when using netmap

(which cannot use more than 2 CPU cores) 4. Notice that the “vhost-net, 4 cores” line in Fig. 9 is equivalent

to the “4 cores, bind” line of Fig. 2, and the “vhost-net 2 cores” in Fig. 9 is equivalent to the “2 cores” curve

from Fig. 2.

If netmap is compared with macvtap plus vhost-net using only 2 CPU cores (“vhost-net 2 cores” in

Fig. 9), it shows similar routing performance with a better behaviour in overload.

3.5. Controlling VSR Performance

All the results reported until now show that there is a clear relationship between the amount of CPU

time consumed by a VSR (in particular, by the vcpu thread and by the vhost-net kernel thread) and VSR

performance (in terms of forwarding packet rate). As a result, if the CPU scheduler is able to control the

amount of CPU time consumed by a thread, then this mechanism can be used to control VSR performance

instead of using the kernel’s Traffic Control or network scheduling modules, that can introduce unneeded

overhead.

This has been verified by using the SCHED DEADLINE scheduler for Linux [15], which implements the

Constant Bandwidth Server (CBS) scheduling algorithm [16]. This scheduling algorithm permits to reserve

to a specific task, thread, or process an amount of time equal to Qs every period T s. As a result, the task

is guaranteed to be able to execute for Qs time units every T s, but cannot consume more than this amount

of time. Thus, Qs/T s represents the fraction of CPU’s processing time that the task can use.

4Notice that macvtap provides the low level (i.e, NIC to TAP) connection and vhost-net provides the high level (i.e, TAP to

guest) connection, while netmap can pass packets directly to user space guest.
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Figure 10: Performance of a monolithic VSR as a function of the amount of time reserved to the vhost-net kernel thread,

when vcpu and vhost-net execute on 2 different cores.

The effectiveness of SCHED DEADLINE in controlling the VSR performance has been studied through a

large number of experiments, binding the vcpu thread and the vhost-net kernel thread to various CPU

cores, and scheduling them through the CBS algorithm.

Fig. 10 plots the throughput achieved for different input rates when the vhost-net kernel thread and

the vcpu thread are scheduled on different CPU cores, and the vhost-net kernel thread is scheduled by a

CBS with T s = 200ms and Qs ranging from 70ms (35% of the core’s time) to 190ms (95% of the core’s

time). Throughput increases almost linearly with the amount of time reserved for the vhost-net kernel

(until it reaches the peak forwarding rate).

Fig. 11 plots the results of a similar experiment in which the vcpu thread (instead of the vhost-net

kernel thread) is scheduled using the CBS. Virtual routing performance increases almost linearly with the

amount of reserved time, until the peak forwarding rate is reached. By comparing Fig. 10 and Fig. 11, it

is apparent that the vhost-net kernel thread consumes more CPU time than the vcpu thread (the VSR

reaches the maximum performance for larger values of the reserved CPU time).

Finally, Fig. 12 shows performance when the vhost-net kernel thread and the vcpu thread are scheduled

on the same CPU core, and the vcpu thread is scheduled by a CBS with T s = 200ms and Qs ranging from

70ms (35% of the core’s time) to 190ms (95% of the core’s time). Once again the throughput increases

almost linearly with the amount of time reserved to the vcpu thread. However, in this case the peak

throughput is lower, due to the fact that the two threads are sharing the same CPU core.
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Figure 11: Performance of a monolithic VSR as a function of the amount of time reserved to the vcpu thread, when vcpu and

vhost-net execute on 2 different cores.
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Figure 12: Performance of a monolithic VSR as a function of the amount of time reserved to the vcpu thread, when vcpu and

vhost-net execute on the same core.
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Figure 13: Performance of a monolithic VSR as a function of the macvtap queue size, when vcpu and vhost-net execute on

the same core and are scheduled with real-time priorities.
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Figure 14: Performance of a monolithic VSR as a function of the macvtap queue size, when vcpu and vhost-net execute on

the same core and the vcpu thread is reserved 170ms every 200ms.
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Figure 15: Performance of a monolithic VSR as a function of the macvtap queue size, when vcpu and vhost-net execute on

the same core and the vcpu thread is reserved 90ms every 200ms.

3.6. Effects of the macvtap queue size

As explained in Sec. 2 and in the Appendix, the packets received on the physical interface are queued in

a macvtap (or TAP) device before being moved into the virtio ring by the vhost-net kernel thread. Some

experiments on a monolithic VSR showed that when the VSR is overloaded, the size of this device’s queue

can heavily affect the forwarding performance. This happens because a longer queue allows the vhost-net

kernel thread to move more packets to the virtio ring, increasing the vcpu thread load and the number of

packets sent back by the guest. Hence, the vhost-net kernel thread spends more time to move packets back

to the tx ring of the physical interface.

This seems to suggest that early packet dropping can avoid congestions in the vcpu thread and in the

tx path. Hence, it can be conjectured that when the system is overloaded, the macvtap queue should be

shorter to drop packets as soon as possible and to avoid spending CPU time in processing packets that will

be dropped later. This intuition is confirmed by Fig. 13, showing the impact of the macvtap queue size on

the performance of a monolithic VSR with the vcpu thread and vhost-net kernel thread scheduled on the

same core. A queue size of 110 packets permits to reach a slightly higher peak rate, but provides a worse

behaviour in overload. Smaller queue sizes (such as 50 packets or 35 packets) represent a good trade-off

allowing to reach a slightly worse peak rate but showing no degradation in overload (thanks to the early

packets dropping). Extreme values, such as 500 or 5 tend to provide worse performance. In particular, large

queues behave well until the VSR is overloaded but are then subject to a huge performance degradation.

Very short queues, on the other hand, perform badly at low loads.

Similar experiments were repeated when scheduling the vcpu thread with the CBS scheduling, and
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reserving a variable amount of time for it. When the vcpu thread is reserved a large amount of time, the

results are similar to the ones shown in Fig. 13. In particular, Fig. 14 shows the virtual routing performance

obtained when the vcpu thread is scheduled by using a (170ms, 200ms) CBS. Performance obtained for queue

sizes of 35 and 50 packets are very similar to the previous ones, while the performance obtained for large

queue sizes (500 packets) are slightly better in overload. This is due to the temporal protection mechanism

provided by the CBS. Finally, Fig. 15 shows what happens in conditions of huge overload. The vcpu thread

is controlled by a (90ms, 200ms) CBS, hence it has not enough CPU time to route the packets.

4. Aggregation of Multiple Virtual Routers

As shown in Fig. 2, even when the host scheduler is correctly configured, a “monolithic” VSR (that is,

a VSR based on a single VM running a SR) is not able to forward more than 900kpps when using small

packets. Since the bottleneck lies in the vhost-net kernel thread, which consumes 100% of the CPU time

of the core where it is bound, virtualising a multiprocessor machine does not improve performance (see

Sec. 3.3). A solution to this issue could be to increase the number of vhost-net threads, by modifying the

host and VMM setup and the mechanism used to move packets between physical and virtual interfaces. An

alternative approach could be to modify the VSR structure, moving from a monolithic VSR to a routing

architecture based on the aggregation of multiple software modules running inside multiple VMs. Such

an aggregation can be performed using several different virtual routing architectures, exhibiting different

characteristics in terms of performance, scalability and flexibility. In the following two different architectures

are discussed.

The first example of such an aggregation is the Multistage Software Router (MSR) [3], which is based

on a very flexible and feature-rich architecture, shown in Fig. 16.

A Multistage Software Router is composed by the following 3 stages:

• the first stage is composed by layer-2 Load Balancers (LBs) that distribute the input traffic load to

some Back-end Routers (BRs);

• the second stage is the interconnection network. This is a mesh-based switched network between the

first stage LBs and the third stage BRs. Multiple paths between the LBs and BRs could exist to

support fault recovery;

• the third stage is composed by the BRs, i.e, forwarding engines that route packets to the proper LB.

A virtual Control Processor (Virtual CP) is used to coordinate the architecture as well as to unify the

BRs’ routing table. The MSR hides its internal architecture and presents itself to external devices as a

single router. As shown in previous work, the MSR architecture, when implemented on a cluster of physical

machines, provides several interesting features, such as extending the number of interfaces one PC can host
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Figure 16: Example of the multi-stage router composed by two load balancers and three back-end routers.

Figure 17: The implementation of the multistage software router inside a KVM server: 1 load balancer and 1 back-end router,

with different interconnection networks.

(limited by the number of PCIe slots), dynamically shutting down unnecessary BRs at low traffic load while

turning on BRs at high load, and seamlessly increasing the overall routing performance when necessary.

Furthermore, it has been shown that, if LBs are implemented using FPGA hardware, the MSR’s forwarding

speed can scale almost linearly with the number of BRs. Instead, a software LB implementation based on

Click modular router [17] permits to easily virtualise a MSR architecture using VMs for BRs and LBs.

The interconnection network is implemented inside the host as shown in Fig. 17, using openvswitch or

a standard Linux software bridge and some pairs of TAP interfaces (since Figure 8 shows that openvswitch

easily outperforms the standard bridge, it has been used in the experiments presented in this paper).

Connection with the physical interface can be implemented using the Linux macvtap feature to improve

performance when less CPU cores are available, as shown before.
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Figure 18: Performance of a PVR on 4 CPU cores, increasing the number of aggregated routers.

Implementing the first stage (LBs) with Click provides high flexibility: it become possible to build MSRs

with a variable numbers of LBs and BRs, with a wide range of interconnection networks allowing for BRs

distributions on different hosts, redundancy/fault tolerance, etc. However, it comes at the cost of consuming

a huge amount of CPU time in the vcpu threads of the LBs, and in their vhost-net kernel threads. This

means that the number of CPU cores needed to provide high performance becomes extremely high due to

the software LB implementation.

If the focus is on forwarding performance (and some features/flexibility can be traded for higher per-

formance), then a different VSR aggregation strategy can be used. The Linux macvtap interface provides

a multi-queue functionality that can be used for load balancing: a single macvtap interface can split the

traffic on multiple queues (currently based on network flows, but can be modified to distribute packets in a

round-robin fashion). Such packet queues can be used by a single VM (using a multi-queue virtual network

interface), or by multiple VMs. In this paper, this feature is used for running multiple identical copies of

the same VSR, each one using a different macvtap queue. All VSRs run in identical VMs (having the same

number of Ethernet interfaces, with the same IP and MAC addresses) and are seen from outside as a single

VSR. Hence, the multi-queue macvtap aggregates all VSRs in a single VSR with the same configuration.

This architecture, referred as Parallel Virtual Routers (PVR) architecture in this paper, is less flexible than

MSR, but it removes the LB performance bottleneck (as shown in the next section).

5. Performance of Modular VSR

The next experiment focuses on the analysis of PVR performance. Fig. 18 displays how the performance

of a PVR using the multi-queue macvtap mechanism for load balancing is affected by the number of aggre-
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Figure 19: Effects of CPU bindings on the MSR performance.

gated routers. 4 CPU cores are used, and the setup is the same as the one used in Fig. 2 (same CPU, same

number of runs per experiment, and the 99% confidence interval is displayed). This modular VSR is able

to outperform a monolithic VSR (the best curve from Fig. 2 is repeated in Fig. 18 as “1 router, bind”) and

reaches a forwarding rate of more than 1100kpps. Furthermore, when aggregating 2 routers, CPU bindings

have marginal impact on forwarding performance. On the other hand, when aggregating 3 routers, using

proper bindings permits to better exploit the CPU time. Bindings become less relevant when increasing the

number of routers, but performance do not improve, indicating that 4 CPU cores are not able to forward

more than 1200kpps in a virtual architecture.

The last set of experiments focuses on analysing virtual MSR performance. Fig. 19 shows how the number

of available CPU cores and the usage of correct CPU bindings affect the performance of a MSR. For the sake

of simplicity and to easily understand the results, the figure refers to a simple MSR configuration with only

1 LB and 1 BR, but similar experiments with more complex setups were also performed providing results

consistent with the ones presented here. Before analysing the results, consider that this MSR configuration

(1 LB and 1 BR) creates 5 CPU-consuming threads: 1 vcpu thread and 2 vhost-net threads for the LB

(since the LB has 2 virtual Ethernet interfaces), plus 1 vcpu thread and 1 vhost-net thread for the BR. As

a result, the performance when executing on a single CPU core are pretty bad (the 5 threads easily overload

a single core) and have not been reported in the figure.

When increasing the number of CPU cores to 2, the performance plot starts to become interesting, and

appears to be quite sensitive to the CPU bindings: when no bindings are used, the MSR can route a little bit

more than 100kpps. In overload, the 5 threads tend to overload the CPU and keep bouncing between the 2

available cores. As a result, the variance in the forwarded throughput is higher (see the confidence interval).
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Binding the vcpu threads of the LB and of the BR to the first core, and binding all the vhost-net kernel

threads to the second core (“bind case A” in the figure) permits to achieve a higher maximum throughput

(about 250kpps). However, when the router is overloaded, throughput decreases (arriving to about 120kpps

for an input rate of 1400kpps). This happens because the three vhost-net threads overload the second

core, when there is still some idle time on the first one. However, distributing the threads between cores

in a different way (for example, see “bind case B” in the figure: the vhost-net kernel threads of the LB

execute on the first core, together with the vcpu thread of the BR, all other threads are on the second core),

does not seem to help and leads to a lower maximum throughput (about 200kpps) and a worse behaviour

in overload.

Finally, when increasing the number of cores to 4, the MSR performance further improves (because more

CPU time is available for the 5 threads). Also in this case proper CPU bindings permit to improve the

performance. The confidence intervals of the “4 cores, no bind” case are so large ( reaching a size of more

than 500kpps) that have been removed from the plot for the sake of readability By looking at the scheduler

statistics and at the CPU usage inside the host, it is possible to see that the main performance problems

are due to the vcpu thread of the LB, running Click, that consumes 100% of the CPU time on a core. This

explains why the PVR architecture (which does not use Click for load balancing) is able to better exploit

the computational power provided by the 4 CPU cores.

6. Related Work

The virtualisation of network resources is considered as a major opportunity to foster the innovation

in the Internet and to solve the Internet ossification [18, 19] problem. Thus, many research projects are

working on virtualisation technologies today. For instance, GENI [20] is a NSF research project (U.S.A.) on

future Internet architectures where virtualisation technologies are used to create slices of network. On the

European side, the FP7 FEDERICA project [21, 6] uses a similar approach based on virtualisation to create

network slices to support research activities. Furthermore, network device manufacturers like Cisco and

Juniper are supporting network virtualisation in their products as well. More recently, many companies like

Amazon, Google and Microsoft are building services related to network virtualisation and cloud computing.

Researchers focused the attention on how to virtualise the key network component, i.e, routers or

switches, and on performance improvements. Software routers based on XEN have been studied exten-

sively [11, 22, 23]. The main conclusion is that the DomU, i.e, the guest domain, is not suitable for routing

purpose due to the high overhead and low performance. More recent works on XEN [24, 25] show that it is

possible to optimise the router internal architecture (i.e, maintain the packet in the same CPU cache with

the help from multi-queue network interface support) to highly improve the SR’s performance. A differ-

ent approach to virtualisation can be taken by using a container-base approach such as OpenVZ or LXC,
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which can reduce the VM overhead. The implementation of VSRs based on such an approach has also been

considered in literature [26]. Comparing those results with the ones presented in this paper, it is possible

to notice that a proper configuration allows KVM to reach performance comparable with a container-based

approach (or even better, but the comparison can be unfair because the experiments are based on different

hardware).

Since the traditional Linux networking stack is designed for general purpose usage, some research works

focused on optimising it for routing, or proposed alternative networking architectures to improve SR’s

performance. Netmap [2] and PF RING [27] modify the NIC’s drivers to directly map the NIC’s ring buffers

in user-space, bypassing the host networking stack to improve the performance. This approach is evaluated

in Section 3.4, showing how it allows to achieve good performance with a small CPU usage, but it is not

able to fully exploit all the available CPU cores. Packetshader [1] redirects received packets to the GPU

for processing and forwarding. Experimental results show that Packetshader can improve significantly the

throughput of CPU intensive workloads like encryption. Routebricks [4] exploits server clusters and load

balancing to build a flat router architecture, similarly to the MSR solution.

Recently, multi-core architectures became very affordable, thus ways to parallelise processing and use all

available resources to speed up SR performance became an appealing research topic. Several new technologies

were introduced to improve networking performance, including Receive Side Scaling (RSS), Virtual Machine

Device Queues (VMDq) and Extended Message-Signalled Interrupts (MSI-X), that are all technologies

intended to utilise the multi-core server architecture efficiently [28]. The main idea is to spread the traffic

load and network interrupts onto multiple cores while minimising cache misses at the same time. In the

research side, some interesting works can be found as well. The performance impact of these mechanisms

has been evaluated in various papers, for example by running software routers on a machine with multi-core

CPUs and multi-queue NICs [29], or by studying the RSS and interrupt throttling mechanisms in XEN to

improve the virtual software router performance [30]. Other works focused on evaluating the SR performance

in multi-core systems by exploiting the standard Linux forwarding path [31].

7. Conclusions

This paper investigated the effects of some implementation and configuration details (scheduling affin-

ity and priority, mechanisms used to move packets between VMs and physical interfaces, software router

structure, ...) on the forwarding performance of virtual software router running in KVM. In particular, the

paper showed:

• how to exploit the computing power provided by multiple CPU cores, by properly setting the CPU

affinity of the various virtualisation activities;
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• how to further improve the virtual forwarding performance by splitting the virtualisation activities

into multiple threads;

• how a reservation-based scheduler allows to control the amount of CPU time consumed by a virtual

router (and hence the VR performance);

• how the mechanisms used to move packets between VMs can affect the VR performance.

Moreover, it has been shown that a modular router architecture can help in better exploiting the com-

putational power of the host. Two different architectures based on virtual routers aggregation have been

analysed, optimising one of them for flexibility and the other one for performance (experimental results

show that it is possible to outperform the monolithic architecture). Finally, the loose coupled aggregated

software router architecture can be hosted in multiple servers, that can further boost the performance with

more available resource as in the cloud computing scenario.
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Figure A.20: The detailed scheme of packet path in virtualised software router architecture.
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AppendixA. Moving Packets between Physical and Virtual Interfaces

A VSR is based on one or more VMs running in a host. The host has several physical Network Interface

Cards (NICs) which receive/transmit packets to be delivered to/from the VMs. Hence, the host must
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provide some mechanisms to move packets between physical and virtual NICs. Consider the most important

operations performed for packet forwarding in a VSR:

• the physical NIC receives packets and stores them in a receive side data structure which is called

rx ring. The host is notified about packets arrival through some interrupts generated by the NIC;

• the network drivers (which are part of the host OS kernel) insert received packets in a software structure

(skbuff), and the vhost-net kernel thread moves the skbuffs into a virtio ring (vhost virtqueue

in Fig. A.20) which is shared between host and guest. The guest is then notified (by triggering an

interrupt in the guest) to do further processing;

• The frontend virtio driver inside the guest fetches the packets from the virtio ring and forwards

them from the input virtual NIC to the destination one by running some forwarding code (for example,

the Linux OS kernel in the guest);

• The guest OS notifies the host (activating the vhost-net kernel thread) that some packets are ready

to be sent, and the vhost-net kernel thread delivers them to the correct physical NIC (by using the

device driver, which puts the packets in a transmission side data structure called tx ring);

• The transmission interface sends packets out and cleans/recycles the resource.

The details of the packet life cycle in the VSR is described in Fig. A.20. The NICs are connected to

PCIe slots, and during the boot of the host OS, multiple memory regions, corresponding to the so called

tx rings and rx rings, are allocated to NICs. These data structures are located in the main memory (i.e,

RAM) and can be accessed by both the CPUs and the NICs (modern NICs use bus mastering to move data

between the rings and the physical interface). As soon as a packet is received by a NIC, it is stored in

the rx ring by the NIC (using bus mastering), and a hardware interrupt is eventually generated to notify

the kernel for processing. The kernel handles such an interrupt by running an Interrupt Service Routine

(ISR), or hardIRQ handler, which sends a fast acknowledgement to the NIC. The packet, however, is not

processed in hardIRQ context, but packet processing is deferred to a later handler (the so called softIRQ

handler), which can perform more time consuming operations. When the packet arrival rate is very high,

the excessive number of generated interrupts (or the resulting interrupt storms) could introduce too much

overhead and decreases the system throughput significantly. This issue is addressed by some interrupt

mitigation mechanisms implemented in the hardware, and by the NAPI [32] mechanism implemented in

the Linux kernel, which can reduce the activation rate of hardIRQ handlers by adaptively using a polling

technique. Notice that modern network cards/drivers enable NAPI by default, and we exploit this feature

in both host and guest.
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Indeed, when a hardware interrupt is received the NAPI driver just acknowledges the NIC and triggers

a softIRQ. Such a softIRQ executes the net rx action() function, which calls the driver to receive the

packets from the rx ring, and can start polling the NIC (disabling the generation of hardware interrupts)

if the packet arrival rate is too high and risks cause a high interrupt load. Polling will stop (and hardware

interrupts will be re-enabled) as soon as a lower packet arrival rate is detected.

Many solutions exist for moving packets into the guest, by queueing them in some kind of device, and

using some mechanism to move packets from such a device to the guest. For instance, a software bridge

could be created by running the Linux brctl utility, thus a layer 2 network between the host and the guest

is built. In this solution, a TAP interface is used to make the packets accessible to the VMM. Alternatively, a

different and more efficient device - the macvtap device - can be used. In this case, the macvtap interface is

directly bound to the physical NIC (performing a MAC-based filtering) and can be directly accessed by the

VMM to improve performance. More recently, the netmap solution, which is based on directly mapping the

NIC rings in user space to make them directly accessible by the VMM, has been proposed for connecting

the guest with host or directly with a NIC. Sec. 3.4 presents a detailed comparison of these 3 approaches.

Here for the sake of simplicity we focus on the description of macvtap.

As shown in Fig. A.20, the driver (invoked by net rx action()) receives the packets and passes them

to netif receive skb(), which in turn passes them to the macvtap device (without passing through the

host’s network protocol stack). Then, packets are enqueued in the macvtap interface from which packets are

moved to the virtio ring by the vhost-net kernel thread. This action is performed by the macvtap receive

function, which is invoked by macvlan handle frame() when a packet is received, and inserts such a packet

in queue contained in the macvtap interface. Then, the vhost-net kernel thread polls packets from the

macvtap queue by calling the handle rx() function and after processing, it eventually inserts the packets

into a shared memory region (called vhost virtqueue). The vhost-net kernel thread notifies the user

space guest of the arrived packet events by registering them into the KVM kernel module, which has the

feature to trigger the corresponding guest rx interrupts for further processing.

The guest is then notified of the received packet, and processes it according to the traditional Linux for-

warding schema as described in [33]. Roughly speaking, the guest kernel fetches packets from vhost virtqueue

to the rx ring inside the guest, with the help of the virtio frontend driver. Packets are then passed to

the IP forwarding sub-system of a standard Linux kernel and, after processing, i.e, header checksum, TTL

decrease, destination matching operations etc, they are sent out to the correct virtual interface and placed

into the corresponding vhost virtqueue. The guest then kicks the vhost-net kernel thread by means of a

registered I/O event file descriptor, which the vhost-net thread monitors.

Packets are then moved back to a physical NIC by the host kernel:

• packets are moved from the vhost virtqueue into the qdisc by calling the handle tx() and macvtap sendmsg();
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• packets transmission is scheduled based on the QoS rules defined to the queueing discipline (qdisc)

configured in the host, by calling sch direct xmit();

• the NIC driver (i.e, the e1000 xmit frame() function as shown in Fig. A.20) sends them to the wire;

• the memory is cleared and recycled for future use.

The specific function calls depend on the specific drivers used by the host and on the mechanism used

to move packets between host and guest, but the path followed by packets in VSR is similar in all solutions.
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