Underwater photogrammetry, like its counterpart in 'air', has gained an increasing diffusion thanks to the availability of easy-to-use, fast and often quite inexpensive software applications. Moreover, underwater equipment that allows the use of digital cameras normally designed to work in air also in water are largely available. However, for assuring accurate and reliable 3D modelling results a profound knowledge of the employed devices as well as physical and geometric principle is even more crucial than in air. This study aims to take a step forward in understanding the effect of underwater ports in front of the photographic lens. In particular, the effect of dome or flat ports on image quality in 3D modelling applications is investigated. Experiments conducted in a semi submerged indust rial structure show that the tested flat port performs worse than the dome, providing higher image residuals and lower precision and accuracy in object space. A significant different quality per colour channel is also observed and its influence on achievable processing results is discussed.

Flat versus hemispherical dome ports in underwater photogrammetry

Menna, F.;Nocerino, E.;Remondino, F.
2017-01-01

Abstract

Underwater photogrammetry, like its counterpart in 'air', has gained an increasing diffusion thanks to the availability of easy-to-use, fast and often quite inexpensive software applications. Moreover, underwater equipment that allows the use of digital cameras normally designed to work in air also in water are largely available. However, for assuring accurate and reliable 3D modelling results a profound knowledge of the employed devices as well as physical and geometric principle is even more crucial than in air. This study aims to take a step forward in understanding the effect of underwater ports in front of the photographic lens. In particular, the effect of dome or flat ports on image quality in 3D modelling applications is investigated. Experiments conducted in a semi submerged indust rial structure show that the tested flat port performs worse than the dome, providing higher image residuals and lower precision and accuracy in object space. A significant different quality per colour channel is also observed and its influence on achievable processing results is discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/313301
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact